神经网络简单介绍

人工神经网络(artififial neural network) 简称神经网络,它是一种模仿生物神经网络结构和功能的非线性数学模型。

神经网络通过输入层接受原始特征信息,再通过隐藏层进行特征信息的加工和提取,最后通过输出层输出结果。

根据需要神经网络可以包含多层隐藏层。

激活函数它用于将输入数据映射到输出端,通过激活函数将非线性特征引入神经元。从而得到神经网络可以任意逼近任何非线性函数。

Sigmoid函数将值压缩到[0-1]之间。tanh函数将值压缩到[-1,1]之间。

激活函数在神经网络中起着非常重要的作用。它们是一类非线性函数,被应用于神经元或人工神经元的输出,用于引入非线性特性。以下是激活函数的几个关键作用:

  • 引入非线性:线性函数的组合仍然只能得到线性函数,而激活函数的非线性特性能够使神经网络具备处理非线性关系的能力。这对于解决复杂的问题非常关键,因为许多自然现象和人类行为往往都是非线性的。
    改善模型的表达能力:通过引入非线性变换,激活函数能够帮助神经网络更好地学习和表示非线性函数。这使得神经网络能够逼近非线性映射,从而提高模型的表达能力。
  • 解决梯度消失问题:在深层神经网络中,反向传播时梯度可能会变得非常小,从而导致梯度消失问题。一些激活函数,如ReLU(Rectified Linear Unit),能够缓解这个问题,因为它们的导数在一定范围内保持恒定。这有助于梯度在网络中传播得更远,使得网络能够更好地学习。
  • 控制神经元的激活状态:激活函数的输出可以被看作是神经元的激活状态。通过调整激活函数的参数和形状,我们可以控制神经元是否激活以及激活的程度。这对于控制神经网络的整体行为和输出非常重要。
  • 常见的激活函数包括Sigmoid函数、ReLU函数、Leaky ReLU函数、Tanh函数等。选择适合的激活函数取决于具体的任务和数据特点,在实际应用中需要根据实验和经验进行选择。
相关推荐
明明真系叻27 分钟前
第二十六周机器学习笔记:PINN求正反解求PDE文献阅读——正问题
人工智能·笔记·深度学习·机器学习·1024程序员节
XianxinMao1 小时前
Transformer 架构对比:Dense、MoE 与 Hybrid-MoE 的优劣分析
深度学习·架构·transformer
88号技师2 小时前
2024年12月一区SCI-加权平均优化算法Weighted average algorithm-附Matlab免费代码
人工智能·算法·matlab·优化算法
IT猿手2 小时前
多目标应用(一):多目标麋鹿优化算法(MOEHO)求解10个工程应用,提供完整MATLAB代码
开发语言·人工智能·算法·机器学习·matlab
88号技师2 小时前
几款性能优秀的差分进化算法DE(SaDE、JADE,SHADE,LSHADE、LSHADE_SPACMA、LSHADE_EpSin)-附Matlab免费代码
开发语言·人工智能·算法·matlab·优化算法
2301_764441332 小时前
基于python语音启动电脑应用程序
人工智能·语音识别
HyperAI超神经2 小时前
未来具身智能的触觉革命!TactEdge传感器让机器人具备精细触觉感知,实现织物缺陷检测、灵巧操作控制
人工智能·深度学习·机器人·触觉传感器·中国地质大学·机器人智能感知·具身触觉
galileo20163 小时前
转化为MarkDown
人工智能
说私域3 小时前
私域电商逆袭密码:AI 智能名片小程序与商城系统如何梦幻联动
人工智能·小程序
请站在我身后3 小时前
复现Qwen-Audio 千问
人工智能·深度学习·语言模型·语音识别