速度提升数十倍,只需一张图一句话,谷歌新模型20秒即可实现变脸

时隔 8 个月,谷歌又提出了一种能在 20 秒内实现人脸个性化处理的新生成模型。

此前,谷歌和波士顿大学的研究者提出了一种「个性化(Personalization)」的文本到图像扩散模型 DreamBooth,用户只需提供 3~5 个样本 + 一句话,AI 就能定制照片级图像。

对于「个性化」我们可以这样理解,以输入图像为参考,生成的图像在各种情境和不同风格中都能保持对其身份的高度忠实。

举例来讲,输入左侧 4 张小狗的照片,DreamBooth 就可以生成不同类型的小狗,如小狗在景点里旅游、在海里游泳、趴在窝棚里睡觉、甚至人类给它修剪毛发,而生成的图片都高度保持了原图像的特点。

然而,个性化过程在时间和内存需求方面还存在很多挑战。具体到单个个性化模型,进行微调需要大量的 GPU 时间投入,不仅如此,个性化模型还需要很高的存储容量。

为了克服这些挑战,时隔 8 个月,谷歌又提出了一种新的生成模型 HyperDreamBooth。HyperDreamBooth 可以生成不同上下文和风格的人脸,同时还能保留脸部关键知识。

在只使用一张参考图像的情况下,HyperDreamBooth 在大约 20 秒内实现了对人脸的个性化处理,比 DreamBooth 快 25 倍,比 Textual Inversion 快 125 倍,不仅如此,生成的图像与 DreamBooth 质量一样、风格还多样性。此外,HyperDreamBooth 还比常规的 DreamBooth 模型小 10000 倍。

论文地址:arxiv.org/pdf/2307.06...

论文主页:hyperdreambooth.github.io/

在我们深入探讨技术细节之前,先看一些效果。

下图中,左边一栏是输入图像,给定一张图像就可以;中间一栏是根据不同的提示生成的人脸,提示语分别是 Instagram 上一张 V 型脸的自拍照;皮克斯卡通人物的 V 型脸;摇滚明星 V 型脸;树皮一样的 V 型脸。最右边生成的是人物专业照片 V 型脸。结果显示,HyperDreamBooth 具有相当大的可编辑性,同时还能保持人物关键面部特征的完整性。

HyperDreamBooth 与 Textual Inversion 、DreamBooth 方法比较有何优势呢?

下图展示了两个示例、5 种风格,结果显示,HyperDreamBooth 可以很好的保持输入图像特性,还具有很强的可编辑性。

接下来我们看看 HyperDreamBooth 具体是如何实现的。

方法介绍

该研究提出的方法由 3 个核心部分组成,分别是轻量级 DreamBooth(Lightweight DreamBooth,LiDB)、预测 LiDB 权重的 HyperNetwork 和 rank-relaxed 快速微调。

LiDB 的核心思想是进一步分解 rank-1 LoRa 残差的权重空间。具体来说,该研究使用 rank-1 LoRA 权重空间内的随机正交不完全基(random orthogonal incomplete basis)来实现这一点,如下图所示:

HyperDreamBooth 的训练和快速微调如下图 2 所示,分为两个阶段。

第 1 阶段:训练 HyperNetwork 以根据人脸图像预测网络权重。该研究使用预先计算的个性化权重进行监督,使用 L2 损失和 vanilla 扩散重建损失函数。第 2 阶段:给定面部图像,用 HyperNetwork 预测网络权重的初步猜测(initial guess),然后使用重建损失进行微调以增强保真度。

HyperNetwork 架构

该研究使用的 HyperNetwork 架构如下图 4 所示。其中,视觉 Transformer(ViT)编码器将人脸图像转换成潜在的人脸特征,然后将其连接到潜在层权重特征(初始化为 0)。Transformer 解码器接收连接特征的序列,并通过使用 delta 预测细化初始权重来迭代地预测权重特征的值。

值得一提的是,这是 transformer 解码器首次被用于 HyperNetwork。

如下图所示,HyperNetwork + 快速微调取得了良好的效果:

实验

下表为 HyperDreamBooth 与 DreamBooth、 Textual Inversion 比较结果。表明,在所有指标上,HyperDreamBooth 得分最高。

下表为不同迭代次数下的比较结果,比较模型包括 HyperDreamBooth、DreamBooth、400 次迭代的 DreamBooth-Agg-1 和 40 次迭代的 DreamBooth-Agg-2。结果显示,HyperDreamBooth 在三项指标上都超过其他模型。

下表为消融实验结果:主要对比的是 HyperNetwork 对性能的影响。

用户研究。该研究还让用户以投票的方式参与评估,结果显示用户对 HyperNetwork 生成的结果偏好强烈。

了解更多内容,请参考原论文。

相关推荐
qinyia17 分钟前
Wisdom SSH 是一款创新性工具,通过集成 AI 助手,为服务器性能优化带来极大便利。
服务器·人工智能·ssh
昨日之日20063 小时前
Wan2.2-S2V - 音频驱动图像生成电影级质量的数字人视频 ComfyUI工作流 支持50系显卡 一键整合包下载
人工智能·音视频
SEO_juper5 小时前
大型语言模型SEO(LLM SEO)完全手册:驾驭搜索新范式
人工智能·语言模型·自然语言处理·chatgpt·llm·seo·数字营销
攻城狮7号6 小时前
腾讯混元翻译模型Hunyuan-MT-7B开源,先前拿了30个冠军
人工智能·hunyuan-mt-7b·腾讯混元翻译模型·30个冠军
zezexihaha6 小时前
从“帮写文案”到“管生活”:个人AI工具的边界在哪?
人工智能
算家云6 小时前
nano banana官方最强Prompt模板来了!六大场景模板详解
人工智能·谷歌·ai大模型·算家云·ai生图·租算力,到算家云·nano banana 提示词
暴躁的大熊6 小时前
AI助力决策:告别生活与工作中的纠结,明析抉择引领明智选择
人工智能
Gyoku Mint6 小时前
提示词工程(Prompt Engineering)的崛起——为什么“会写Prompt”成了新技能?
人工智能·pytorch·深度学习·神经网络·语言模型·自然语言处理·nlp
梁小憨憨6 小时前
zotero扩容
人工智能·笔记
大数据张老师6 小时前
AI架构师的思维方式与架构设计原则
人工智能·架构师·ai架构·后端架构