支持向量机(iris)

代码:

python 复制代码
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn import svm
import numpy as np

# 定义每一列的属性
colnames = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
# 读取数据
iris = pd.read_csv('data\\iris.data', names=colnames)

# iris.head()是一个pandas库中的函数,用于显示数据集的前几行。默认情况下,它显示前5行数据。
"""
   sepal-length  sepal-width  petal-length  petal-width        class
0           5.1          3.5           1.4          0.2  Iris-setosa
1           4.9          3.0           1.4          0.2  Iris-setosa
2           4.7          3.2           1.3          0.2  Iris-setosa
3           4.6          3.1           1.5          0.2  Iris-setosa
4           5.0          3.6           1.4          0.2  Iris-setosa
"""
iris.head()

# drop():删除行或列
X = iris.drop('class', axis=1)  # 属性值
y = iris['class']   # 类别

scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

clf = svm.SVC(kernel='linear')
clf.fit(X_scaled, y)

# 随机生成3组测试数据,注意需要归一化处理
test_data = scaler.transform(np.array([[5.1, 3.5, 1.4, 0.2], [6.7, 3.1, 4.7, 1.5], [7.9, 3.8, 6.4, 2.0]]))

# 获得模型预测结果
pred = clf.predict(test_data)

print(pred)

对代码的解释:

因为iris.data中是这样的:

即前4列为属性,第5列为类别

定义属性与类别:

python 复制代码
# 定义每一列的属性
colnames = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']

读取数据,并给数据加上colnames:

python 复制代码
# 读取数据
iris = pd.read_csv('data\\iris.data', names=colnames)

print输出一下iris:

对于read_csv()方法:

(4条消息) 详解pandas的read_csv方法_小尛玮的博客-CSDN博客

对于head()函数:

python 复制代码
# iris.head()是一个pandas库中的函数,用于显示数据集的前几行。默认情况下,它显示前5行数据。
"""
   sepal-length  sepal-width  petal-length  petal-width        class
0           5.1          3.5           1.4          0.2  Iris-setosa
1           4.9          3.0           1.4          0.2  Iris-setosa
2           4.7          3.2           1.3          0.2  Iris-setosa
3           4.6          3.1           1.5          0.2  Iris-setosa
4           5.0          3.6           1.4          0.2  Iris-setosa
"""
iris.head()

对于drop()函数:

(3条消息) Pandas基本数据交互机制2-drop()方法_朱错错的哒哒哒的博客-CSDN博客

python 复制代码
# drop():删除行或列
X = iris.drop('class', axis=1)  # 属性值

'class':去掉属性为class的一行或一列

axis=1:去掉某一行,加上参数axis就是去掉某一列

这行代码的返回值为去掉属性为class的那一列之后的数据集,即所有属性

python 复制代码
y = iris['class']   # 类别

这行代码返回值为类别那一列

对于StandardScaler()方法与fit_transform方法

(3条消息) sklearn中StandardScaler()_汽水配辣条的博客-CSDN博客

python 复制代码
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

对于svm()方法

(3条消息) 【机器学习】svm.SVC参数详解_svm.svc中的参数以及作用_Xhfei1224的博客-CSDN博客

python 复制代码
clf = svm.SVC(kernel='linear')
clf.fit(X_scaled, y)

预测

python 复制代码
# 随机生成3组测试数据,注意需要归一化处理
test_data = scaler.transform(np.array([[5.1, 3.5, 1.4, 0.2], [6.7, 3.1, 4.7, 1.5], [7.9, 3.8, 6.4, 2.0]]))

# 获得模型预测结果
pred = clf.predict(test_data)

print(pred)
相关推荐
ahead~1 小时前
【大模型原理与技术-毛玉仁】第五章 模型编辑
人工智能·深度学习·机器学习
Mantanmu2 小时前
Python训练day40
人工智能·python·机器学习
小天才才2 小时前
前沿论文汇总(机器学习/深度学习/大模型/搜广推/自然语言处理)
人工智能·深度学习·机器学习·自然语言处理
MPCTHU2 小时前
机器学习的数学基础:神经网络
机器学习
武子康3 小时前
大数据-276 Spark MLib - 基础介绍 机器学习算法 Bagging和Boosting区别 GBDT梯度提升树
大数据·人工智能·算法·机器学习·语言模型·spark-ml·boosting
武子康3 小时前
大数据-277 Spark MLib - 基础介绍 机器学习算法 Gradient Boosting GBDT算法原理 高效实现
大数据·人工智能·算法·机器学习·ai·spark-ml·boosting
Gyoku Mint12 小时前
机器学习×第二卷:概念下篇——她不再只是模仿,而是开始决定怎么靠近你
人工智能·python·算法·机器学习·pandas·ai编程·matplotlib
猛犸MAMMOTH13 小时前
Python打卡第46天
开发语言·python·机器学习
小wanga14 小时前
【递归、搜索与回溯】专题三 穷举vs暴搜vs回溯vs剪枝
c++·算法·机器学习·剪枝
deephub16 小时前
提升模型泛化能力:PyTorch的L1、L2、ElasticNet正则化技术深度解析与代码实现
人工智能·pytorch·python·深度学习·机器学习·正则化