matlab编程实践14、15

目录

数独

"四独"游戏

解的存在和唯一性

算法

常微分方程


数独


采用蛮力试凑法来解决数独问题。(采用单选数,以及计算机科学技术中的递推回溯法)

以上的数独是图14-2的两个矩阵的和,左侧的矩阵可以由kron和magic函数建立起来,前一个函数用来求Kronecker乘积,后者生成幻方矩阵。

X = kron(eye(3), magic(3))

"四独"游戏


使用4×4网格,可能的备选项用小数标注出来。将单选数填在网格内,如果没有单选数,则采用递归回溯法来求解。(左:有单选数; 右:无单选数)

X=diag(1:4)

Y=shidoku(diag(1:4))
Z=shidoku(diag(1:4)')'  %可能的另一个解

解的存在和唯一性


可以用sudoku_all程序来寻找数独全部的解。

%生成数独谜题
X=kron(eye(3), magic(3))
X=sudoku_puzzle(13)

数独网格的一些运算可能改变其在图形用户界面中的显示,但不能改变其基本特性。所有变化基本上都是相同的数字谜。这些等效的运算可以用matlab的数组运算表示。

%重新排列表示数字的文字
p = randperm(9), z=find(X>0). X(z)=p(X(z))
%其它运算
X', rot90(X, k)
flipud(X), fliplr(X),X([4:9 1:3], :)
X(:, randperm(3) 4:9)
function L = sudoku_all(X,L)
% SUDOKU_ALL  Enumerate all solutions to a Sudoku puzzle.
%   L = sudoku_all(X), for a 9-by-9 array X, is a list of all solutions.
%   L{k} is the k-th solution.
%   L{:} will print all the solutions.
%   length(L) is the number of solutions.  A valid puzzle must have only one.
%   See also sudoku, sudoku_basic, sudoku_puzzle, sudoku_assist.

   if nargin < 2
      % Initialize the list on first entry.
      L = {};
   end

   % Fill in all "singletons", the cells with only one candidate.
   % C is the array of candidates for each cell.
   % N is the vector of the number of candidates for each cell.
   % s is the index of the first cell with the fewest candidates.

   [C,N] = candidates(X);
   while all(N>0) & any(N==1)
      s = find(N==1,1);
      X(s) = C{s};
      [C,N] = candidates(X);
   end

   % Add a solution to the list.

   if all(X(:)>0)
      L{end+1} = X;
   end
   
   % Enumerate all possible solutions.

   if all(N>0)
      Y = X;
      s = find(N==min(N),1);
      for t = [C{s}]                    % Iterate over the candidates.
         X = Y;
         X(s) = t;                      % Insert a value.
         L = sudoku_all(X,L);           % Recursive call.
      end
   end

% ------------------------------

   function [C,N] = candidates(X)
      % C = candidates(X) is a 9-by-9 cell array of vectors.
      % C{i,j} is the vector of allowable values for X(i,j).
      % N is a row vector of the number of candidates for each cell.
      % N(k) = Inf for cells that already have values.
      tri = @(k) 3*ceil(k/3-1) + (1:3);
      C = cell(9,9);
      for j = 1:9
         for i = 1:9
            if X(i,j)==0
               z = 1:9;
               z(nonzeros(X(i,:))) = 0;
               z(nonzeros(X(:,j))) = 0;
               z(nonzeros(X(tri(i),tri(j)))) = 0;
               C{i,j} = nonzeros(z)';
            end
         end
      end
      N = cellfun(@length,C);
      N(X>0) = Inf;
      N = N(:)';
   end % candidates
end % sudoku_all

算法


基本流程:

① 填入所有的单选数

②如果某个单元没有备选项,停止程序

③在某个空白的网格中填入一个试探的值

④ 递归式调用此程序

Matlab 复制代码
function [X,steps] = sudoku(X,steps)
% SUDOKU  Solve a Sudoku puzzle using recursive backtracking.
%   sudoku(X), for a 9-by-9 array X, solves the Sudoku puzzle for X.
%   [X,steps] = sudoku(X) also returns the number of steps.
%   See also sudoku_all, sudoku_assist, sudoku_basic, sudoku_puzzle. 

   if nargin < 1
      X = sudoku_puzzle(1);
   end
   if nargin < 2
      steps = 0;
      gui_init(X);
   end
   sudoku_gui(X,steps);

   % Fill in all "singletons", the cells with only one candidate.
   % C is the array of candidates for each cell.
   % N is the vector of the number of candidates for each cell.
   % s is the index of the first cell with the fewest candidates.

   [C,N] = candidates(X);
   while all(N>0) & any(N==1)
      sudoku_gui(X,steps,C);
      s = find(N==1,1);
      X(s) = C{s};
      steps = steps + 1;
      sudoku_gui(X,steps,C);
      [C,N] = candidates(X);
   end
   sudoku_gui(X,steps,C);
   
   % Recursive backtracking.

   if all(N>0)
      Y = X;
      s = find(N==min(N),1);
      for t = [C{s}]                        % Iterate over the candidates.
         X = Y;
         sudoku_gui(X,steps,C);
         X(s) = t;                          % Insert a tentative value.
         steps = steps + 1;
         sudoku_gui(X,steps,C,s);           % Color the tentative value.

         [X,steps] = sudoku(X,steps);       % Recursive call.

         if all(X(:) > 0)                   % Found a solution.
            break
         end
         sudoku_gui(X,steps,C,-s);          % Revert color of tentative value.
      end
   end
   if nargin < 2
      gui_finish(X,steps);
   end

% ------------------------------

   function [C,N] = candidates(X)
      % C = candidates(X) is a 9-by-9 cell array of vectors
      % C{i,j} is the vector of allowable values for X(i,j).
      % N is a row vector of the number of candidates for each cell.
      % N(k) = Inf for cells that already have values.
      tri = @(k) 3*ceil(k/3-1) + (1:3);
      C = cell(9,9);
      for j = 1:9
         for i = 1:9
            if X(i,j)==0
               z = 1:9;
               z(nonzeros(X(i,:))) = 0;
               z(nonzeros(X(:,j))) = 0;
               z(nonzeros(X(tri(i),tri(j)))) = 0;
               C{i,j} = nonzeros(z)';
            end
         end
      end
      N = cellfun(@length,C);
      N(X>0) = Inf;
      N = N(:)';
   end % candidates

% ------------------------------

   function gui_init(X)

      % Initialize gui
      % H is the structure of handles, saved in figure userdata.

      dkblue = [0 0 2/3];
      dkgreen = [0 1/2 0];
      dkmagenta = [1/3 0 1/3];
      grey = [1/2 1/2 1/2];
      fsize = get(0,'defaulttextfontsize');
      fname = 'Lucida Sans Typewriter';
      clf
      shg
      set(gcf,'color','white')
      axis square
      axis off
      
      for m = [2 3 5 6 8 9]
         line([m m]/11,[1 10]/11,'color',grey)
         line([1 10]/11,[m m]/11,'color',grey)
      end
      for m = [1 4 7 10]
         line([m m]/11,[1 10]/11,'color',dkmagenta,'linewidth',4)
         line([1 10]/11,[m m]/11,'color',dkmagenta,'linewidth',4)
      end
   
      H.a = zeros(9,9);
      for j = 1:9
         for i = 1:9
            if X(i,j) > 0
               string = int2str(X(i,j));
               color = dkblue;
            else
               string = ' ';
               color = dkgreen;
            end
            H.a(i,j) = text((j+1/2)/11,(10.5-i)/11,string, ...
              'units','normal','fontsize',fsize+6,'fontweight','bold', ...
              'fontname',fname,'color',color,'horizont','center');
         end
      end
      strings = {'step','slow','fast','finish'};
      H.b = zeros(1,4);
      for k = 1:4
         H.b(k) = uicontrol('style','toggle','string',strings{k}, ...
            'units','normal','position',[(k+3)*0.125,0.05,0.10,0.05], ...
            'background','white','value',0, ...
            'callback', ...
            'H=get(gcf,''user''); H.s=find(H.b==gco); set(gcf,''user'',H)');
      end
      set(H.b(1),'style','pushbutton')
      H.s = 1;
      H.t = title('0','fontweight','bold');
      set(gcf,'userdata',H)
      drawnow

   end % gui_init

% ------------------------------

   function sudoku_gui(X,steps,C,z)

      H = get(gcf,'userdata');
      if H.s == 4
         if mod(steps,50) == 0
            set(H.t,'string',int2str(steps))
            drawnow
         end
         return
      else
         set(H.t,'string',int2str(steps))
      end
      k = [1:H.s-1 H.s+1:4];
      set(H.b(k),'value',0);
      dkblue = [0 0 2/3];
      dkred = [2/3 0 0];
      dkgreen = [0 1/2 0];
      cyan = [0 2/3 2/3];
      fsize = get(0,'defaulttextfontsize');

      % Update entire array, except for initial entries.

      for j = 1:9
         for i = 1:9
            if ~isequal(get(H.a(i,j),'color'),dkblue) && ...
               ~isequal(get(H.a(i,j),'color'),cyan)
               if X(i,j) > 0
                  set(H.a(i,j),'string',int2str(X(i,j)),'fontsize',fsize+6, ...
                     'color',dkgreen)
               elseif nargin < 3
                  set(H.a(i,j),'string',' ')
               elseif length(C{i,j}) == 1
                  set(H.a(i,j),'string',char3x3(C{i,j}),'fontsize',fsize-4, ...
                     'color',dkred)
               else
                  set(H.a(i,j),'string',char3x3(C{i,j}),'fontsize',fsize-4, ...
                     'color',dkgreen)
               end
            end
         end
      end
      if nargin == 4
         if z > 0
            set(H.a(z),'color',cyan)
         else
            set(H.a(-z),'color',dkgreen)
            return
         end
      end

      % Gui action = single step, brief pause, or no pause

      switch H.s
         case 1
            H.s = 0;
            set(gcf,'userdata',H);
            while H.s == 0;
               drawnow
               H = get(gcf,'userdata');
            end
         case 2
            pause(0.5)
         case 3
            drawnow
      end
      if nargin == 4
         if z > 0
            set(H.a(z),'color',cyan)
         else
            set(H.a(-z),'color',dkgreen)
            return
         end
      end

      % ------------------------------
   
      function s = char3x3(c)
         % 3-by-3 character array of candidates.
         b = blanks(5);
         s = {b; b; b};
         for k = 1:length(c)
            d = c(k);
            p = ceil(d/3);
            q = 2*mod(d-1,3)+1;
            s{p}(q) = int2str(d);
         end
      end

   end % gui

% ------------------------------

   function gui_finish(X,steps)
 
      H = get(gcf,'userdata');
      H.s = 2;
      set(H.b(1:3),'vis','off')
      set(gcf,'userdata',H)
      set(H.b(4),'string','close','value',0, ...
         'callback','close(gcf)')
      sudoku_gui(X,steps)
    
   end % gui_finish

end % sudoku

备选项计算&数独题目生成:

Matlab 复制代码
%% Candidates备选项计算

% C = candidates(X) 为向量数组构成的单元结构
% C{i,j} 为 X(i,j)构成的集合

   C = cell(9,9);
   tri = @(k) 3*ceil(k/3-1) + (1:3);
   for j = 1:9
      for i = 1:9
         if X(i,j)==0
            z = 1:9;
            z(nonzeros(X(i,:))) = 0;
            z(nonzeros(X(:,j))) = 0;
            z(nonzeros(X(tri(i),tri(j)))) = 0;
            C{i,j} = nonzeros(z)';
         end
      end
   end
   C

%% First singleton and first empty. 第一个单选数,第一个空白网格

% N = number of candidates in each cell.
% s = first cell with only one candidate.
% e = first cell with no candidates.

   N = cellfun(@length,C)
   s = find(X==0 & N==1,1)
   e = find(X==0 & N==0,1)

%% Sudoku puzzles 数独题目生成

   help sudoku_puzzle

   for p = 1:16
      sudoku_puzzle(p)
   end

常微分方程


matlab提供了很多求给定常微分方程数组近似解的函数,这一常微分方程组数值解的函数包括ode23、ode45、ode113、ode23s、ode15s、ode23t、ode23tb 。++函数名中的数字表示所用算法的阶次,阶次和算法的复杂程度和精度有关。++ 所有这些函数都会自动选择近似步长,来保证预先选择的精度要求。++所选择的阶次越高,每一步计算量越大,但是所用的步长也越大。++比如ode23算法比较二阶和三阶算法来估计计算步长,而ode45比较的是四阶和五阶算法。

s表示为stiff 刚性微分方程的求解函数。

微分方程求解程序库提供的求解函数都至少需要下面三个输入变元:

(1)F为定义微分方程组的函数

(2)tspan为描述积分区间的向量

(3) y0为初始值的向量

ode1的算法-误差较大

Matlab 复制代码
function [t,y] = ode1(F,tspan,y0)
% ODE1  World's simplest ODE solver.
%   ODE1(F,[t0,tfinal],y0) uses Euler's method to solve
%      dy/dt = F(t,y)
%   with y(t0) = y0 on the interval t0 <= t <= tfinal.

t0 = tspan(1);
tfinal = tspan(end);
h = (tfinal - t0)/200;
y = y0;
for t = t0:h:tfinal
   ydot = F(t,y);
   y = y + h*ydot;
end

匿名函数生成微分方程:

Matlab 复制代码
    acircle = @(t,y) [y(2); -y(1)];

ode23求解

Matlab 复制代码
%% ODE23 Automatic Plotting.
    figure
    tspan = [0 2*pi];
    y0 = [0; 1];
    ode23(acircle,tspan,y0)

%% Phase Plot.
    figure
    tspan = [0 2*pi];
    y0 = [0; 1];
    [t,y] = ode23(acircle,tspan,y0)
    plot(y(:,1),y(:,2),'-o')
    axis square
    axis([-1.1 1.1 -1.1 1.1])

%% ODE23 Automatic Phase Plot.
    opts = odeset('outputfcn',@odephas2)
    ode23(acircle,tspan,y0,opts)
    axis square
    axis([-1.1 1.1 -1.1 1.1])

odeset

相关推荐
记录无知岁月1 小时前
【MATLAB】目标检测初探
开发语言·yolo·目标检测·matlab·yolov3·yolov2
远望清一色1 小时前
基于MATLAB身份证号码识别
开发语言·图像处理·算法·matlab
大福是小强4 小时前
035_Progress_Dialog_in_Matlab中的进度条对话框
ui·matlab·进度条·界面开发·ux·用户界面
慕容复之巅4 小时前
基于MATLAB的条形码的识别图像处理报告
开发语言·图像处理·matlab
小喵要摸鱼7 小时前
MATLAB 使用教程 —— 矩阵和数组
matlab·矩阵
金星娃儿7 小时前
MATLAB基础知识笔记——(矩阵的运算)
笔记·matlab·矩阵
哈听星1 天前
解非线性方程组
数学建模·matlab
亚图跨际1 天前
MATLAB和R及Python伪时间分析
python·matlab·r语言·伪时间分析
fanxbl9571 天前
LVQ 神经网络的 MATLAB 函数详解
人工智能·神经网络·matlab
吃葡萄不图葡萄皮1 天前
3D绘制动态爱心Matlab
开发语言·matlab