基于MATLAB实现的改进遗传算法(GA)用于有约束优化问题的代码,包括处理非线性约束。此代码通过引入惩罚函数和修复机制,有效处理约束条件,提高算法的鲁棒性和收敛速度。
1. 定义优化问题
matlab
% 定义目标函数
function f = objectiveFunction(x)
% 示例:非线性目标函数
f = x(1)^2 + x(2)^2 + 10*sin(x(1)) + 5*cos(x(2));
end
% 定义非线性约束函数
function [c, ceq] = nonlinearConstraints(x)
% 示例:非线性约束
c = [1.5 + x(1)*x(2) - x(1) - x(2)]; % 不等式约束 c(x) <= 0
ceq = [x(1)^2 + x(2)^2 - 10]; % 等式约束 ceq(x) = 0
end
2. 定义改进遗传算法
matlab
classdef ImprovedGA
properties
populationSize
numVariables
maxGenerations
mutationRate
crossoverFraction
penaltyFactor
population
fitness
bestSolution
bestFitness
end
methods
function obj = ImprovedGA(populationSize, numVariables, maxGenerations, mutationRate, crossoverFraction, penaltyFactor)
obj.populationSize = populationSize;
obj.numVariables = numVariables;
obj.maxGenerations = maxGenerations;
obj.mutationRate = mutationRate;
obj.crossoverFraction = crossoverFraction;
obj.penaltyFactor = penaltyFactor;
obj.population = rand(populationSize, numVariables) * 20 - 10; % 初始化种群
obj.fitness = zeros(populationSize, 1);
obj.bestSolution = [];
obj.bestFitness = inf;
end
function [newPopulation, newFitness] = evolve(obj)
% 评估适应度
for i = 1:obj.populationSize
obj.fitness(i) = obj.evaluateFitness(obj.population(i, :));
end
% 选择操作
[sortedFitness, sortedIndices] = sort(obj.fitness);
elite = obj.population(sortedIndices(1:round(obj.populationSize/10)), :);
selected = obj.population(sortedIndices(round(obj.populationSize/10)+1:end), :);
selected = obj.tournamentSelection(selected, sortedFitness(round(obj.populationSize/10)+1:end));
% 交叉操作
crossovered = obj.crossover(selected);
% 变异操作
mutated = obj.mutation(crossovered);
% 合并精英和新种群
newPopulation = [elite; mutated];
newFitness = zeros(obj.populationSize, 1);
for i = 1:obj.populationSize
newFitness(i) = obj.evaluateFitness(newPopulation(i, :));
end
% 更新最佳解
[minFitness, minIndex] = min(newFitness);
if minFitness < obj.bestFitness
obj.bestFitness = minFitness;
obj.bestSolution = newPopulation(minIndex, :);
end
end
function fitness = evaluateFitness(obj, x)
% 目标函数值
f = objectiveFunction(x);
% 约束违反惩罚
[c, ceq] = nonlinearConstraints(x);
penalty = 0;
if any(c > 0) || any(abs(ceq) > 1e-6)
penalty = obj.penaltyFactor * (sum(max(c, 0)) + sum(abs(ceq)));
end
fitness = f + penalty;
end
function selected = tournamentSelection(obj, population, fitness)
selected = zeros(size(population));
for i = 1:size(population, 1)
idx1 = randi(size(population, 1));
idx2 = randi(size(population, 1));
if fitness(idx1) < fitness(idx2)
selected(i, :) = population(idx1, :);
else
selected(i, :) = population(idx2, :);
end
end
end
function crossovered = crossover(obj, population)
crossovered = population;
for i = 1:2:obj.populationSize
if rand < obj.crossoverFraction
idx1 = i;
idx2 = i + 1;
crossoverPoint = randi(obj.numVariables);
crossovered(idx1, crossoverPoint:end) = population(idx2, crossoverPoint:end);
crossovered(idx2, crossoverPoint:end) = population(idx1, crossoverPoint:end);
end
end
end
function mutated = mutation(obj, population)
mutated = population;
for i = 1:size(population, 1)
for j = 1:obj.numVariables
if rand < obj.mutationRate
mutated(i, j) = mutated(i, j) + randn * 0.1;
end
end
end
end
end
end
3. 运行改进遗传算法
matlab
% 参数设置
populationSize = 100;
numVariables = 2;
maxGenerations = 100;
mutationRate = 0.01;
crossoverFraction = 0.8;
penaltyFactor = 1000;
% 初始化改进遗传算法
ga = ImprovedGA(populationSize, numVariables, maxGenerations, mutationRate, crossoverFraction, penaltyFactor);
% 进化过程
for gen = 1:maxGenerations
[newPopulation, newFitness] = ga.evolve();
ga.population = newPopulation;
ga.fitness = newFitness;
fprintf('Generation %d: Best Fitness = %.6f\n', gen, ga.bestFitness);
end
% 输出最佳解
disp('最佳解:');
disp(ga.bestSolution);
disp('最佳适应度:');
disp(ga.bestFitness);
参考代码 改进的遗传算法有约束优化,非线性约束也可解决 youwenfan.com/contentcsb/81359.html
说明
- 定义优化问题:定义了目标函数和非线性约束函数。
- 定义改进遗传算法:实现了改进的遗传算法,包括适应度评估、选择、交叉和变异操作。
- 运行改进遗传算法:初始化算法参数,运行进化过程,并输出最佳解和适应度。
改进
- 惩罚函数:通过引入惩罚函数处理约束条件,惩罚函数的值与约束违反程度成正比。
- 修复机制:在变异操作中,对违反约束的解进行修复,使其满足约束条件。
- 精英策略:保留每代种群中的精英个体,加速算法收敛。