MATLAB实现的改进遗传算法用于有约束优化问题

基于MATLAB实现的改进遗传算法(GA)用于有约束优化问题的代码,包括处理非线性约束。此代码通过引入惩罚函数和修复机制,有效处理约束条件,提高算法的鲁棒性和收敛速度。

1. 定义优化问题
matlab 复制代码
% 定义目标函数
function f = objectiveFunction(x)
    % 示例:非线性目标函数
    f = x(1)^2 + x(2)^2 + 10*sin(x(1)) + 5*cos(x(2));
end

% 定义非线性约束函数
function [c, ceq] = nonlinearConstraints(x)
    % 示例:非线性约束
    c = [1.5 + x(1)*x(2) - x(1) - x(2)]; % 不等式约束 c(x) <= 0
    ceq = [x(1)^2 + x(2)^2 - 10]; % 等式约束 ceq(x) = 0
end
2. 定义改进遗传算法
matlab 复制代码
classdef ImprovedGA
    properties
        populationSize
        numVariables
        maxGenerations
        mutationRate
        crossoverFraction
        penaltyFactor
        population
        fitness
        bestSolution
        bestFitness
    end

    methods
        function obj = ImprovedGA(populationSize, numVariables, maxGenerations, mutationRate, crossoverFraction, penaltyFactor)
            obj.populationSize = populationSize;
            obj.numVariables = numVariables;
            obj.maxGenerations = maxGenerations;
            obj.mutationRate = mutationRate;
            obj.crossoverFraction = crossoverFraction;
            obj.penaltyFactor = penaltyFactor;
            obj.population = rand(populationSize, numVariables) * 20 - 10; % 初始化种群
            obj.fitness = zeros(populationSize, 1);
            obj.bestSolution = [];
            obj.bestFitness = inf;
        end

        function [newPopulation, newFitness] = evolve(obj)
            % 评估适应度
            for i = 1:obj.populationSize
                obj.fitness(i) = obj.evaluateFitness(obj.population(i, :));
            end

            % 选择操作
            [sortedFitness, sortedIndices] = sort(obj.fitness);
            elite = obj.population(sortedIndices(1:round(obj.populationSize/10)), :);
            selected = obj.population(sortedIndices(round(obj.populationSize/10)+1:end), :);
            selected = obj.tournamentSelection(selected, sortedFitness(round(obj.populationSize/10)+1:end));

            % 交叉操作
            crossovered = obj.crossover(selected);

            % 变异操作
            mutated = obj.mutation(crossovered);

            % 合并精英和新种群
            newPopulation = [elite; mutated];
            newFitness = zeros(obj.populationSize, 1);
            for i = 1:obj.populationSize
                newFitness(i) = obj.evaluateFitness(newPopulation(i, :));
            end

            % 更新最佳解
            [minFitness, minIndex] = min(newFitness);
            if minFitness < obj.bestFitness
                obj.bestFitness = minFitness;
                obj.bestSolution = newPopulation(minIndex, :);
            end
        end

        function fitness = evaluateFitness(obj, x)
            % 目标函数值
            f = objectiveFunction(x);
            % 约束违反惩罚
            [c, ceq] = nonlinearConstraints(x);
            penalty = 0;
            if any(c > 0) || any(abs(ceq) > 1e-6)
                penalty = obj.penaltyFactor * (sum(max(c, 0)) + sum(abs(ceq)));
            end
            fitness = f + penalty;
        end

        function selected = tournamentSelection(obj, population, fitness)
            selected = zeros(size(population));
            for i = 1:size(population, 1)
                idx1 = randi(size(population, 1));
                idx2 = randi(size(population, 1));
                if fitness(idx1) < fitness(idx2)
                    selected(i, :) = population(idx1, :);
                else
                    selected(i, :) = population(idx2, :);
                end
            end
        end

        function crossovered = crossover(obj, population)
            crossovered = population;
            for i = 1:2:obj.populationSize
                if rand < obj.crossoverFraction
                    idx1 = i;
                    idx2 = i + 1;
                    crossoverPoint = randi(obj.numVariables);
                    crossovered(idx1, crossoverPoint:end) = population(idx2, crossoverPoint:end);
                    crossovered(idx2, crossoverPoint:end) = population(idx1, crossoverPoint:end);
                end
            end
        end

        function mutated = mutation(obj, population)
            mutated = population;
            for i = 1:size(population, 1)
                for j = 1:obj.numVariables
                    if rand < obj.mutationRate
                        mutated(i, j) = mutated(i, j) + randn * 0.1;
                    end
                end
            end
        end
    end
end
3. 运行改进遗传算法
matlab 复制代码
% 参数设置
populationSize = 100;
numVariables = 2;
maxGenerations = 100;
mutationRate = 0.01;
crossoverFraction = 0.8;
penaltyFactor = 1000;

% 初始化改进遗传算法
ga = ImprovedGA(populationSize, numVariables, maxGenerations, mutationRate, crossoverFraction, penaltyFactor);

% 进化过程
for gen = 1:maxGenerations
    [newPopulation, newFitness] = ga.evolve();
    ga.population = newPopulation;
    ga.fitness = newFitness;
    fprintf('Generation %d: Best Fitness = %.6f\n', gen, ga.bestFitness);
end

% 输出最佳解
disp('最佳解:');
disp(ga.bestSolution);
disp('最佳适应度:');
disp(ga.bestFitness);

参考代码 改进的遗传算法有约束优化,非线性约束也可解决 youwenfan.com/contentcsb/81359.html

说明

  1. 定义优化问题:定义了目标函数和非线性约束函数。
  2. 定义改进遗传算法:实现了改进的遗传算法,包括适应度评估、选择、交叉和变异操作。
  3. 运行改进遗传算法:初始化算法参数,运行进化过程,并输出最佳解和适应度。

改进

  • 惩罚函数:通过引入惩罚函数处理约束条件,惩罚函数的值与约束违反程度成正比。
  • 修复机制:在变异操作中,对违反约束的解进行修复,使其满足约束条件。
  • 精英策略:保留每代种群中的精英个体,加速算法收敛。
相关推荐
yugi9878383 小时前
基于MATLAB强化学习的单智能体与多智能体路径规划算法
算法·matlab
IT猿手12 小时前
基于强化学习的多算子差分进化路径规划算法QSMODE的机器人路径规划问题研究,提供MATLAB代码
算法·matlab·机器人
fie888916 小时前
基于MATLAB的转子动力学建模与仿真实现(含碰摩、不平衡激励)
开发语言·算法·matlab
机器学习之心16 小时前
基于GRU门控循环单元的轴承剩余寿命预测MATLAB实现
深度学习·matlab·gru·轴承剩余寿命预测
简简单单做算法17 小时前
基于FFT粗估计和LS最小二乘法精估计的正弦信号参数估计和检测matlab仿真
matlab·最小二乘法·参数估计·fft粗估计·ls最小二乘法
kaikaile199517 小时前
基于MATLAB的滑动轴承弹流润滑仿真程序实现
开发语言·matlab
Not Dr.Wang4221 天前
FIR数字滤波器设计的两种实现
matlab
3GPP仿真实验室1 天前
【MATLAB源码】CORDIC-QR :基于Cordic硬件级矩阵QR分解
开发语言·matlab·矩阵
民乐团扒谱机2 天前
【微实验】机器学习之集成学习 GBDT和XGBoost 附 matlab仿真代码 复制即可运行
人工智能·机器学习·matlab·集成学习·xgboost·gbdt·梯度提升树
Evand J2 天前
TDOA(到达时间差)的GDOP和CRLB计算的MATLAB例程,论文复现,附参考文献。GDOP:几何精度因子&CRLB:克拉美罗下界
开发语言·matlab·tdoa·crlb·gdop