MATLAB实现的改进遗传算法用于有约束优化问题

基于MATLAB实现的改进遗传算法(GA)用于有约束优化问题的代码,包括处理非线性约束。此代码通过引入惩罚函数和修复机制,有效处理约束条件,提高算法的鲁棒性和收敛速度。

1. 定义优化问题
matlab 复制代码
% 定义目标函数
function f = objectiveFunction(x)
    % 示例:非线性目标函数
    f = x(1)^2 + x(2)^2 + 10*sin(x(1)) + 5*cos(x(2));
end

% 定义非线性约束函数
function [c, ceq] = nonlinearConstraints(x)
    % 示例:非线性约束
    c = [1.5 + x(1)*x(2) - x(1) - x(2)]; % 不等式约束 c(x) <= 0
    ceq = [x(1)^2 + x(2)^2 - 10]; % 等式约束 ceq(x) = 0
end
2. 定义改进遗传算法
matlab 复制代码
classdef ImprovedGA
    properties
        populationSize
        numVariables
        maxGenerations
        mutationRate
        crossoverFraction
        penaltyFactor
        population
        fitness
        bestSolution
        bestFitness
    end

    methods
        function obj = ImprovedGA(populationSize, numVariables, maxGenerations, mutationRate, crossoverFraction, penaltyFactor)
            obj.populationSize = populationSize;
            obj.numVariables = numVariables;
            obj.maxGenerations = maxGenerations;
            obj.mutationRate = mutationRate;
            obj.crossoverFraction = crossoverFraction;
            obj.penaltyFactor = penaltyFactor;
            obj.population = rand(populationSize, numVariables) * 20 - 10; % 初始化种群
            obj.fitness = zeros(populationSize, 1);
            obj.bestSolution = [];
            obj.bestFitness = inf;
        end

        function [newPopulation, newFitness] = evolve(obj)
            % 评估适应度
            for i = 1:obj.populationSize
                obj.fitness(i) = obj.evaluateFitness(obj.population(i, :));
            end

            % 选择操作
            [sortedFitness, sortedIndices] = sort(obj.fitness);
            elite = obj.population(sortedIndices(1:round(obj.populationSize/10)), :);
            selected = obj.population(sortedIndices(round(obj.populationSize/10)+1:end), :);
            selected = obj.tournamentSelection(selected, sortedFitness(round(obj.populationSize/10)+1:end));

            % 交叉操作
            crossovered = obj.crossover(selected);

            % 变异操作
            mutated = obj.mutation(crossovered);

            % 合并精英和新种群
            newPopulation = [elite; mutated];
            newFitness = zeros(obj.populationSize, 1);
            for i = 1:obj.populationSize
                newFitness(i) = obj.evaluateFitness(newPopulation(i, :));
            end

            % 更新最佳解
            [minFitness, minIndex] = min(newFitness);
            if minFitness < obj.bestFitness
                obj.bestFitness = minFitness;
                obj.bestSolution = newPopulation(minIndex, :);
            end
        end

        function fitness = evaluateFitness(obj, x)
            % 目标函数值
            f = objectiveFunction(x);
            % 约束违反惩罚
            [c, ceq] = nonlinearConstraints(x);
            penalty = 0;
            if any(c > 0) || any(abs(ceq) > 1e-6)
                penalty = obj.penaltyFactor * (sum(max(c, 0)) + sum(abs(ceq)));
            end
            fitness = f + penalty;
        end

        function selected = tournamentSelection(obj, population, fitness)
            selected = zeros(size(population));
            for i = 1:size(population, 1)
                idx1 = randi(size(population, 1));
                idx2 = randi(size(population, 1));
                if fitness(idx1) < fitness(idx2)
                    selected(i, :) = population(idx1, :);
                else
                    selected(i, :) = population(idx2, :);
                end
            end
        end

        function crossovered = crossover(obj, population)
            crossovered = population;
            for i = 1:2:obj.populationSize
                if rand < obj.crossoverFraction
                    idx1 = i;
                    idx2 = i + 1;
                    crossoverPoint = randi(obj.numVariables);
                    crossovered(idx1, crossoverPoint:end) = population(idx2, crossoverPoint:end);
                    crossovered(idx2, crossoverPoint:end) = population(idx1, crossoverPoint:end);
                end
            end
        end

        function mutated = mutation(obj, population)
            mutated = population;
            for i = 1:size(population, 1)
                for j = 1:obj.numVariables
                    if rand < obj.mutationRate
                        mutated(i, j) = mutated(i, j) + randn * 0.1;
                    end
                end
            end
        end
    end
end
3. 运行改进遗传算法
matlab 复制代码
% 参数设置
populationSize = 100;
numVariables = 2;
maxGenerations = 100;
mutationRate = 0.01;
crossoverFraction = 0.8;
penaltyFactor = 1000;

% 初始化改进遗传算法
ga = ImprovedGA(populationSize, numVariables, maxGenerations, mutationRate, crossoverFraction, penaltyFactor);

% 进化过程
for gen = 1:maxGenerations
    [newPopulation, newFitness] = ga.evolve();
    ga.population = newPopulation;
    ga.fitness = newFitness;
    fprintf('Generation %d: Best Fitness = %.6f\n', gen, ga.bestFitness);
end

% 输出最佳解
disp('最佳解:');
disp(ga.bestSolution);
disp('最佳适应度:');
disp(ga.bestFitness);

参考代码 改进的遗传算法有约束优化,非线性约束也可解决 youwenfan.com/contentcsb/81359.html

说明

  1. 定义优化问题:定义了目标函数和非线性约束函数。
  2. 定义改进遗传算法:实现了改进的遗传算法,包括适应度评估、选择、交叉和变异操作。
  3. 运行改进遗传算法:初始化算法参数,运行进化过程,并输出最佳解和适应度。

改进

  • 惩罚函数:通过引入惩罚函数处理约束条件,惩罚函数的值与约束违反程度成正比。
  • 修复机制:在变异操作中,对违反约束的解进行修复,使其满足约束条件。
  • 精英策略:保留每代种群中的精英个体,加速算法收敛。
相关推荐
数维学长98615 小时前
【全网最全】《2025国赛/高教杯》C题 思路+代码python和matlab+文献 一到四问 退火算法+遗传算法 NIPT的时点选择与胎儿的异常判定
开发语言·算法·matlab
dlraba80216 小时前
用遗传算法破解一元函数最大值问题:从原理到 MATLAB 实现
开发语言·matlab
996终结者1 天前
Python数据分析与处理(二):将数据写回.mat文件的不同方法【超详细】
python·matlab·数据分析
我是水怪的哥1 天前
在时间序列中增加一个阶跃对长期趋势变化的影响
matlab·lake
lingchen19061 天前
MATLAB矩阵及其运算(三)矩阵的创建
算法·matlab·矩阵
民乐团扒谱机2 天前
【微实验】妈妈,我的MATLAB开始学方言了!?(一)
数学建模·matlab·语言学·方言
2zcode2 天前
基于Matlab能带态密度的载流子迁移-发射过程数值模拟与光强依赖性分析
人工智能·算法·matlab
lingchen19063 天前
MATLAB矩阵及其运算(四)矩阵的运算及操作
开发语言·matlab·矩阵
dlraba8023 天前
用 MATLAB 实现遗传算法求解一元函数极值:从代码到实践
开发语言·matlab
封奚泽优3 天前
提取动漫图像轮廓并拟合为样条曲线(MATLAB)
图像处理·人工智能·计算机视觉·matlab·deepseek