Pytorch(一)

目录

一、基本操作

二、自动求导机制

三、线性回归DEMO

3.1模型的读取与保存

3.2利用GPU训练时

四、常见的Tensor形式

五、Hub模块


一、基本操作

操作代码如下:

python 复制代码
import torch
import numpy as np

#创建一个矩阵
x1 = torch.empty(5,3)

# 随机值
x2 = torch.rand(5,3)

# 初始化一个全零的矩阵
x3 = torch.zeros(5,3,dtype = torch.long)

# view操作改变矩阵维度
x4 = torch.randn(4,4) #4*4矩阵
y = x4.view(16) #变成一行的矩阵
z = x4.view(-1,8) #变为2*8的矩阵
print(y.size()) #矩阵的尺寸

#与numpy的协同操作
# tensor转array
a = torch.ones(5)
b = a.numpy()

# array转tensor
a1 = np.ones(5)
b1 = torch.from_numpy(a)

二、自动求导机制

案例代码如下:

python 复制代码
import torch

#计算流程
x = torch.rand(1)
b = torch.rand(1,requires_grad=True)
w = torch.rand(1,requires_grad=True)
y = w * x
z = y + b

# 反向传播计算
z.backward(retain_graph = True)
print(w.grad)
print(b.grad)

三、线性回归DEMO

python 复制代码
import numpy as np
import torch
import torch.nn as nn

# 构建线性回归模型
class LinearRegressionModel(nn.Module):
    def __init__(self,input_dim,output_dim):
        super(LinearRegressionModel,self).__init__()
        self.linear = nn.Linear(input_dim,output_dim)

    def forward(self,x):
        out = self.linear(x)
        return out

x_values = [i for i in range(11)]
x_train = np.array(x_values,dtype=np.float32)
x_train = x_train.reshape(-1,1)
print(x_train.shape)

#y = 2x + 1
y_values = [2*i + 1 for i in range(11)]
y_train = np.array(x_values,dtype=np.float32)
y_train = x_train.reshape(-1,1)

# 构建model
input_dim = 1
output_dim = 1

model = LinearRegressionModel(input_dim,output_dim)

# 指定好参数和损失函数
epochs = 1000 #训练次数
learning_rate = 0.01 #学习率
optimizer = torch.optim.SGD(model.parameters(),lr = learning_rate) #优化器
criterion = nn.MSELoss() #损失函数

# 训练模型
for epoch in range(epochs):
    epoch += 1
    #注意转行为tensor
    inputs = torch.from_numpy(x_train)
    labels = torch.from_numpy(y_train)


    #梯度要清零每一次迭代
    optimizer.zero_grad()

    #前向传播
    outputs = model(inputs)

    #计算损失
    loss = criterion(outputs,labels)

    #反向传播
    loss.backward()

    #更新权重参数
    optimizer.step()
    if epoch % 50 ==0:
        print('epoch {},loss {}'.format(epoch,loss.item()))

3.1模型的读取与保存

python 复制代码
# 模型的保存与读取
torch.save(model.state.dict(),'model.pkl') #保存
model.load_state_dict(torch.load('model.pkl')) #读取

3.2利用GPU训练时

利用GPU训练时要将数据与模型导入cuda

python 复制代码
#注意转行为tensor
inputs = torch.from_numpy(x_train)
labels = torch.from_numpy(y_train)
#利用GPU训练数据时的数据
inputs = torch.from_numpy(x_train).to(device)
labels = torch.from_numpy(y_train).to(device)


model = LinearRegressionModel(input_dim,output_dim)

#使用GPU进行训练
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)

四、常见的Tensor形式

  • 1.scalar:通常是指一个数值
  • 2.vector:通常是指一个向量
  • 3.matrix:通常是指一个数据矩阵
  • 4.n-dimensional tensor:高维数据

五、Hub模块

Github地址:https://github.com/pytorch/hub

Hub已有模型:https://pytorch.org/hub/research-models

相关推荐
ai小鬼头23 分钟前
AIStarter新版重磅来袭!永久订阅限时福利抢先看
人工智能·开源·github
说私域1 小时前
从品牌附庸到自我表达:定制开发开源AI智能名片S2B2C商城小程序赋能下的营销变革
人工智能·小程序
飞哥数智坊1 小时前
新版定价不够用,Cursor如何退回旧版定价
人工智能·cursor
12点一刻2 小时前
搭建自动化工作流:探寻解放双手的有效方案(2)
运维·人工智能·自动化·deepseek
未来之窗软件服务2 小时前
东方仙盟AI数据中间件使用教程:开启数据交互与自动化应用新时代——仙盟创梦IDE
运维·人工智能·自动化·仙盟创梦ide·东方仙盟·阿雪技术观
chao_7892 小时前
二分查找篇——搜索旋转排序数组【LeetCode】一次二分查找
数据结构·python·算法·leetcode·二分查找
烛阴2 小时前
Python装饰器解除:如何让被装饰的函数重获自由?
前端·python
JNU freshman2 小时前
计算机视觉速成 之 概述
人工智能·计算机视觉
noravinsc3 小时前
django 一个表中包括id和parentid,如何通过parentid找到全部父爷id
python·django·sqlite
ajassi20003 小时前
开源 python 应用 开发(三)python语法介绍
linux·python·开源·自动化