PTA 1030 Travel Plan

个人学习记录,代码难免不尽人意。

A traveler's map gives the distances between cities along the highways, together with the cost of each highway. Now you are supposed to write a program to help a traveler to decide the shortest path between his/her starting city and the destination. If such a shortest path is not unique, you are supposed to output the one with the minimum cost, which is guaranteed to be unique.

Input Specification:

Each input file contains one test case. Each case starts with a line containing 4 positive integers N, M, S, and D, where N (≤500) is the number of cities (and hence the cities are numbered from 0 to N−1); M is the number of highways; S and D are the starting and the destination cities, respectively. Then M lines follow, each provides the information of a highway, in the format:

City1 City2 Distance Cost

where the numbers are all integers no more than 500, and are separated by a space.

Output Specification:

For each test case, print in one line the cities along the shortest path from the starting point to the destination, followed by the total distance and the total cost of the path. The numbers must be separated by a space and there must be no extra space at the end of output.

Sample Input:

4 5 0 3

0 1 1 20

1 3 2 30

0 3 4 10

0 2 2 20

2 3 1 20

Sample Output:

0 2 3 3 40

cpp 复制代码
#include<cstdio>
#include<algorithm>
using namespace std;
int N,M,C1,C2;
const int maxn=510;


const int INF=1000000000;
bool vis[maxn]={false};
int d[maxn],c[maxn],pre[maxn];
struct node{
	int d;
	int cost;
};
node Node[maxn][maxn];
void dijkstra(){
	fill(d,d+maxn,INF);
	fill(c,c+maxn,INF);
	for(int i=0;i<N;i++) pre[i]=i;
	d[C1]=0;c[C1]=0;
	for(int i=0;i<N;i++){
		int u=-1;int min=INF;
		for(int j=0;j<N;j++){
			if(vis[j]==false&&d[j]<min){
				u=j;
				min=d[j];
			}
		}
	if(u==-1) return;
	vis[u]=true;
	for(int v=0;v<N;v++){
		if(vis[v]==false&&Node[u][v].d!=0){
			if(d[v]>Node[u][v].d+d[u]){
				d[v]=Node[u][v].d+d[u];
				c[v]=Node[u][v].cost+c[u];
				pre[v]=u;
			}else if(d[v]==Node[u][v].d+d[u]){
				if(c[v]>Node[u][v].cost+c[u]){
					c[v]=Node[u][v].cost+c[u];
					pre[v]=u;
				}
			}
		}
	}
	}
}
void DFS(int s){
	if(s==C1){
		printf("%d",s);
		return;
	}
	else{
		DFS(pre[s]);
		printf(" %d",s);
	}
}
int main(){
	scanf("%d%d%d%d",&N,&M,&C1,&C2);
	for(int i=0;i<M;i++){
		int cost,d;
		int c1,c2;
		scanf("%d%d%d%d",&c1,&c2,&d,&cost);
		node* n=new node;
		n->cost=cost;
		n->d=d;
		Node[c1][c2]=Node[c2][c1]=*n;
		
	} 
	dijkstra();
	DFS(C2);
	printf(" %d %d\n",d[C2],c[C2]);
} 

本题参考了《算法笔记》上面的dijkstra算法,对于求解这一类的最小值问题可以将dijkstra算法的模板背过,然后根据题意修改其内容即可。

除了上面这种做法还可以将第二类距离的求解从dijkstra算法中剥离出来,采用DFS方法来处理,比较简单,我觉得两种方法掌握一种即可。

相关推荐
野渡拾光1 小时前
【考研408数据结构-05】 串与KMP算法:模式匹配的艺术
数据结构·考研·算法
tainshuai3 小时前
用 KNN 算法解锁分类的奥秘:从电影类型到鸢尾花开
算法·分类·数据挖掘
Coovally AI模型快速验证9 小时前
农田扫描提速37%!基于检测置信度的无人机“智能抽查”路径规划,Coovally一键加速模型落地
深度学习·算法·yolo·计算机视觉·transformer·无人机
pusue_the_sun9 小时前
数据结构:二叉树oj练习
c语言·数据结构·算法·二叉树
RaymondZhao3410 小时前
【全面推导】策略梯度算法:公式、偏差方差与进化
人工智能·深度学习·算法·机器学习·chatgpt
zhangfeng113310 小时前
DBSCAN算法详解和参数优化,基于密度的空间聚类算法,特别擅长处理不规则形状的聚类和噪声数据
算法·机器学习·聚类
啊阿狸不会拉杆11 小时前
《算法导论》第 32 章 - 字符串匹配
开发语言·c++·算法
小学生的信奥之路11 小时前
洛谷P3817题解:贪心算法解决糖果分配问题
c++·算法·贪心算法
你知道网上冲浪吗12 小时前
【原创理论】Stochastic Coupled Dyadic System (SCDS):一个用于两性关系动力学建模的随机耦合系统框架
python·算法·数学建模·数值分析
地平线开发者13 小时前
征程 6 | PTQ 精度调优辅助代码,总有你用得上的
算法·自动驾驶