PTA 1030 Travel Plan

个人学习记录,代码难免不尽人意。

A traveler's map gives the distances between cities along the highways, together with the cost of each highway. Now you are supposed to write a program to help a traveler to decide the shortest path between his/her starting city and the destination. If such a shortest path is not unique, you are supposed to output the one with the minimum cost, which is guaranteed to be unique.

Input Specification:

Each input file contains one test case. Each case starts with a line containing 4 positive integers N, M, S, and D, where N (≤500) is the number of cities (and hence the cities are numbered from 0 to N−1); M is the number of highways; S and D are the starting and the destination cities, respectively. Then M lines follow, each provides the information of a highway, in the format:

City1 City2 Distance Cost

where the numbers are all integers no more than 500, and are separated by a space.

Output Specification:

For each test case, print in one line the cities along the shortest path from the starting point to the destination, followed by the total distance and the total cost of the path. The numbers must be separated by a space and there must be no extra space at the end of output.

Sample Input:

4 5 0 3

0 1 1 20

1 3 2 30

0 3 4 10

0 2 2 20

2 3 1 20

Sample Output:

0 2 3 3 40

cpp 复制代码
#include<cstdio>
#include<algorithm>
using namespace std;
int N,M,C1,C2;
const int maxn=510;


const int INF=1000000000;
bool vis[maxn]={false};
int d[maxn],c[maxn],pre[maxn];
struct node{
	int d;
	int cost;
};
node Node[maxn][maxn];
void dijkstra(){
	fill(d,d+maxn,INF);
	fill(c,c+maxn,INF);
	for(int i=0;i<N;i++) pre[i]=i;
	d[C1]=0;c[C1]=0;
	for(int i=0;i<N;i++){
		int u=-1;int min=INF;
		for(int j=0;j<N;j++){
			if(vis[j]==false&&d[j]<min){
				u=j;
				min=d[j];
			}
		}
	if(u==-1) return;
	vis[u]=true;
	for(int v=0;v<N;v++){
		if(vis[v]==false&&Node[u][v].d!=0){
			if(d[v]>Node[u][v].d+d[u]){
				d[v]=Node[u][v].d+d[u];
				c[v]=Node[u][v].cost+c[u];
				pre[v]=u;
			}else if(d[v]==Node[u][v].d+d[u]){
				if(c[v]>Node[u][v].cost+c[u]){
					c[v]=Node[u][v].cost+c[u];
					pre[v]=u;
				}
			}
		}
	}
	}
}
void DFS(int s){
	if(s==C1){
		printf("%d",s);
		return;
	}
	else{
		DFS(pre[s]);
		printf(" %d",s);
	}
}
int main(){
	scanf("%d%d%d%d",&N,&M,&C1,&C2);
	for(int i=0;i<M;i++){
		int cost,d;
		int c1,c2;
		scanf("%d%d%d%d",&c1,&c2,&d,&cost);
		node* n=new node;
		n->cost=cost;
		n->d=d;
		Node[c1][c2]=Node[c2][c1]=*n;
		
	} 
	dijkstra();
	DFS(C2);
	printf(" %d %d\n",d[C2],c[C2]);
} 

本题参考了《算法笔记》上面的dijkstra算法,对于求解这一类的最小值问题可以将dijkstra算法的模板背过,然后根据题意修改其内容即可。

除了上面这种做法还可以将第二类距离的求解从dijkstra算法中剥离出来,采用DFS方法来处理,比较简单,我觉得两种方法掌握一种即可。

相关推荐
你撅嘴真丑10 小时前
第九章-数字三角形
算法
uesowys10 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
ValhallaCoder10 小时前
hot100-二叉树I
数据结构·python·算法·二叉树
董董灿是个攻城狮10 小时前
AI 视觉连载1:像素
算法
智驱力人工智能11 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
孞㐑¥11 小时前
算法——BFS
开发语言·c++·经验分享·笔记·算法
月挽清风11 小时前
代码随想录第十五天
数据结构·算法·leetcode
XX風12 小时前
8.1 PFH&&FPFH
图像处理·算法
NEXT0612 小时前
前端算法:从 O(n²) 到 O(n),列表转树的极致优化
前端·数据结构·算法
代码游侠12 小时前
学习笔记——设备树基础
linux·运维·开发语言·单片机·算法