【深度学习_TensorFlow】梯度下降

写在前面

一直不太理解梯度下降算法是什么意思,今天我们就解开它神秘的面纱


写在中间

线性回归方程


如果要求出一条直线,我们只需知道直线上的两个不重合的点,就可以通过解方程组来求出直线

但是,如果我们选取的这两个点不在直线上,而是存在误差(暂且称作观测误差),这样求出的直线就会和原直线相差很大,我们应该怎样做呢?首先肯定不能只通过两个点,就武断地求出这条直线。

我们通常尽可能多地使用分布在直线周围的点,也可能不存在一条直线完美的穿过所有采样点。那么,退而求其次,我们希望能找到一条比较"好"的位于采样点中间的直线。那么怎么衡量"好"与"不好"呢?一个很自然的想法就是,求出当前模型的所有采样点上的预测值𝑤𝑥(𝑖) + 𝑏与真实值𝑦(𝑖)之间的差的平方和作为总误差 L \mathcal{L} L,然后搜索一组参数 w ∗ , b ∗ w^{*},b^{*} w∗,b∗使得 L \mathcal{L} L最小,对应的直线就是我们要寻找的最优直线。

w ∗ , b ∗ = arg ⁡ min ⁡ w , b 1 n ∑ i = 1 n ( w x ( i ) + b − y ( i ) ) 2 w^*,b^*=\arg\min_{w,b}\frac{1}{n}\sum_{i=1}^{n}\bigl(wx^{(i)}+b-y^{(i)}\bigr)^2 w∗,b∗=argminw,bn1∑i=1n(wx(i)+b−y(i))2

最后再通过梯度下降法来不断优化参数 w ∗ , b ∗ w^{*},b^{*} w∗,b∗

有基础的小伙伴们可能知道求误差的方法其实就是均方误差函数,不懂得可以看这篇文章补充养分《误差函数》 ,我们这篇文章就侧重梯度下降。

梯度下降


函数的梯度定义为函数对各个自变量的偏导数组成的向量。不会的话,翻翻高等数学下册书。

举个例子,对于曲面函数𝑧 = 𝑓(𝑥, 𝑦),函数对自变量𝑥的偏导数记为 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z,函数对自变量𝑦的偏导数记为 ∂ z ∂ y \frac{\partial z}{\partial y} ∂y∂z,则梯度∇𝑓为向量 ( ∂ z ∂ x , ∂ z ∂ y ) ({\frac{\partial z}{\partial x}},{\frac{\partial z}{\partial y}}) (∂x∂z,∂y∂z),梯度的方向总是指向当前位置函数值增速最大的方向,函数曲面越陡峭,梯度的模也越大。

函数在各处的梯度方向∇𝑓总是指向函数值增大的方向,那么梯度的反方向−∇𝑓应指向函数值减少的方向。利用这一性质,我们只需要按照下式来更新参数,,其中𝜂用来缩放梯度向量,一般设置为某较小的值,如 0.01、0.001 等。

x ′ = x − η ⋅ d y d x x'=x-\eta\cdot\frac{\mathrm{d}y}{\mathrm{d}x} x′=x−η⋅dxdy

结合上面的回归方程,我们就可对误差函数求偏导,以循环的方式更新参数 w , b w,b w,b:

w ′ = w − η ∂ L ∂ w b ′ = b − η ∂ L ∂ b \begin{aligned}w'&=w-\eta\frac{\partial\mathcal{L}}{\partial w}\\\\b'&=b-\eta\frac{\partial\mathcal{L}}{\partial b}\end{aligned} w′b′=w−η∂w∂L=b−η∂b∂L

函数实现


计算过程都需要包裹在 with tf.GradientTape() as tape 上下文中,使得前向计算时能够保存计算图信息,方便自动求导操作。通过tape.gradient()函数求得网络参数到梯度信息,结果保存在 grads 列表变量中。

GradientTape()函数

GradientTape(persistent=False, watch_accessed_variables=True)

  • persistent: 布尔值,用来指定新创建的gradient

    tape是否是可持续性的。默认是False,意味着只能够调用一次GradientTape()函数,再次使用会报错

  • watch_accessed_variables:布尔值,表明GradientTape()函数是否会自动追踪任何能被训练的变量。默认是True。要是为False的话,意味着你需要手动去指定你想追踪的那些变量。

tape.watch()函数

tape.watch()用于跟踪指定类型的tensor变量。

  • 由于GradientTape()默认只对tf.Variable类型的变量进行监控。如果需要监控的变量是tensor类型,则需要tape.watch()来监控,否则输出结果将是None

tape.gradient()函数

tape.gradient(target, source)

  • target:求导的因变量

  • source:求导的自变量

Python 复制代码
import tensorflow as tf

w = tf.constant(1.)
x = tf.constant(2.)
y = x * w

with tf.GradientTape() as tape:
    tape.watch([w])
    y = x * w

grads = tape.gradient(y, [w])
print(grads)

写在最后

👍🏻点赞,你的认可是我创作的动力!

⭐收藏,你的青睐是我努力的方向!

✏️评论,你的意见是我进步的财富!

相关推荐
新缸中之脑1 分钟前
Llama 3.2 安卓手机安装教程
前端·人工智能·算法
人工智障调包侠3 分钟前
基于深度学习多层感知机进行手机价格预测
人工智能·python·深度学习·机器学习·数据分析
开始King44 分钟前
Tensorflow2.0
人工智能·tensorflow
Elastic 中国社区官方博客1 小时前
Elasticsearch 开放推理 API 增加了对 Google AI Studio 的支持
大数据·数据库·人工智能·elasticsearch·搜索引擎
infominer1 小时前
RAGFlow 0.12 版本功能导读
人工智能·开源·aigc·ai-native
涩即是Null1 小时前
如何构建LSTM神经网络模型
人工智能·rnn·深度学习·神经网络·lstm
本本的小橙子1 小时前
第十四周:机器学习
人工智能·机器学习
励志成为美貌才华为一体的女子2 小时前
《大规模语言模型从理论到实践》第一轮学习--第四章分布式训练
人工智能·分布式·语言模型
学步_技术2 小时前
自动驾驶系列—自动驾驶背后的数据通道:通信总线技术详解与应用场景分析
人工智能·机器学习·自动驾驶·通信总线
winds~2 小时前
自动驾驶-问题笔记-待解决
人工智能·笔记·自动驾驶