Spark写PGSQL分区表

这里写目录标题

需求

spark程序计算后的数据需要往PGSQL中的分区表进行写入。

碰到的问题

格式问题

使用了字符串格式,导致插入报错。

scala 复制代码
val frame = df.withColumn("insert_time",current_timestamp()))
yaml 复制代码
Batch entry 0 INSERT INTO t ("a","insert_time") VALUES 
(1,'2023-08-01 10:00:00') was aborted: ERROR: column 
"insert_time" is of type timestamp without time zone but 
expression is of type character varying

分区问题(重点)

一直都是spark计算完后写单表或者hive的表,都需要去手动去维护分区。但是写PGSQL空表(只有表字段,还没有数据,没有创建分区),需要手动先创建分区,否则会报错。

报错信息

yaml 复制代码
Partition key of the failing row contains (insert_time) = 
(2023-08-04 21:14:09.641).  Call getNextException to see other 
errors in the batch.

插入失败的行的分区键包含的时间戳值 2023-08-04 21:14:09.641 在分区表中找不到对应的分区范围。

解决

最终的解决方案是在插入数据之前,通过代码去添加分区,添加好分区后再写入数据即可。

scala 复制代码
object WritePgSQL {

  def main(args: Array[String]): Unit = {

        val spark = SparkSession.builder()
          .appName("SparkPostgreSQLPartitionedTable")
          .config("spark.master", "local")
          .getOrCreate()

        // 设置PostgreSQL连接信息
        val postgresUrl = "jdbc:postgresql://192.168.160.123:5432/test"
        val connectionProperties = new java.util.Properties()
        connectionProperties.setProperty("user", "test")
        connectionProperties.setProperty("password", "123456")

        // 创建测试数据
        val data = Seq(
              (1, "2023-08-01 10:00:00"),
              (2, "2023-08-02 12:00:00"),
              (3, "2023-08-03 15:00:00")
        )

        val columns = Seq("a", "insert_time1")
        val df = spark.createDataFrame(data).toDF(columns: _*)



        val frame = df.drop("insert_time1")
          .withColumn("insert_time", current_timestamp().cast("timestamp"))

        
        // 动态创建分区范围
        // p1 可以换成p20230804这样的分区格式
        // t为表名
        // (TIMESTAMP '2023-08-04 00:00:00') 分区开始范围,一般通过代码生成,为计算时间的零点
        // (TIMESTAMP '2023-08-05 00:00:00') 分区结束范围,一般通过代码生成,为计算时间的下一天零点
        val createPartitionSql =
              s"""
          CREATE TABLE "p1" PARTITION OF t FOR VALUES FROM (TIMESTAMP '2023-08-04 00:00:00') TO (TIMESTAMP '2023-08-05 00:00:00') ;
          """

        println(createPartitionSql)

        // 执行创建分区 SQL
        val connection = java.sql.DriverManager.getConnection(postgresUrl, connectionProperties)
        val statement = connection.createStatement()
        statement.executeUpdate(createPartitionSql)
        connection.close()
        // 将数据写入PostgreSQL分区表
        frame.write
          .mode("append")
          .jdbc(postgresUrl, "t", connectionProperties)
  }
}

完整代码

自动生成当天日期和分区名称

scala 复制代码
object WritePgSQL {

  def main(args: Array[String]): Unit = {

        val spark = SparkSession.builder()
          .appName("SparkPostgreSQLPartitionedTable")
          .config("spark.master", "local")
          .getOrCreate()

        // 设置PostgreSQL连接信息
        val postgresUrl = "jdbc:postgresql://192.168.160.123:5432/test"
        val connectionProperties = new java.util.Properties()
        connectionProperties.setProperty("user", "test")
        connectionProperties.setProperty("password", "123456")
        // 创建测试数据
        val data = Seq(
              (1, "2023-08-01 10:00:00"),
              (2, "2023-08-02 12:00:00"),
              (3, "2023-08-03 15:00:00")
        )

        val columns = Seq("a", "insert_time1")
        val df = spark.createDataFrame(data).toDF(columns: _*)

        val frame = df.drop("insert_time1")
          .withColumn("insert_time", current_timestamp().cast("timestamp"))

        // 获取今天和明天的时间范围
        // 获取当前日期
        val currentDate = LocalDate.now()
        // 获取下一天的日期
        val nextDayDate = currentDate.plusDays(1)
        // 创建固定的时间部分(00:00:00)
        val startTime = LocalTime.of(0, 0, 0)
       // 组合日期和时间来得到完整的日期时间,并格式化为字符串
       val currentDateTimeString = LocalDateTime.of(currentDate, startTime).format(DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss"))
       val nextDayDateTimeString = LocalDateTime.of(nextDayDate, startTime).format(DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss"))

       // 格式化为yyyyMMdd字符串
       val dateFormatter = DateTimeFormatter.ofPattern("yyyyMMdd")
       val currentDateString = currentDate.format(dateFormatter)

       // 动态创建分区范围
        val createPartitionSql =
              s"""
          CREATE TABLE "p$currentDateString" PARTITION OF t
          FOR VALUES FROM (TIMESTAMP '$currentDateTimeString') TO (TIMESTAMP '$nextDayDateTimeString') ;
          """
        // 执行创建分区 SQL
        val connection = java.sql.DriverManager.getConnection(postgresUrl, connectionProperties)
        val statement = connection.createStatement()
        statement.executeUpdate(createPartitionSql)
        connection.close()
        // 将数据写入PostgreSQL分区表
        frame.write
          .mode("append")
          .jdbc(postgresUrl, "t", connectionProperties)
  }
}

效果

相关推荐
AI营销先锋20 分钟前
2025 AI市场舆情分析行业报告:原圈科技如何帮助企业穿越迷雾,寻找增长北极星
大数据·人工智能
TDengine (老段)39 分钟前
TDengine 在新能源领域的最佳实践
大数据·数据库·物联网·时序数据库·tdengine·涛思数据
Alluxio39 分钟前
Alluxio正式登陆Oracle云市场,为AI工作负载提供TB级吞吐量与亚毫秒级延迟
人工智能·分布式·机器学习·缓存·ai·oracle
武子康1 小时前
Java-204 RabbitMQ Connection/Channel 工作流程:AMQP 发布消费、抓包帧结构与常见坑
java·分布式·消息队列·rabbitmq·ruby·java-activemq
郑州光合科技余经理1 小时前
海外国际版同城服务系统开发:PHP技术栈
java·大数据·开发语言·前端·人工智能·架构·php
跨境卫士苏苏1 小时前
突围新品广告泥潭:亚马逊广告底层逻辑大重构
大数据·人工智能·算法·重构·亚马逊·防关联
zhz52141 小时前
代码之恋(第十五篇:分布式心跳与网络延迟)
网络·分布式·ai·重构·vue·结对编程
云老大TG:@yunlaoda3601 小时前
开通华为云国际站代理商的UCS服务需要哪些资质?
大数据·数据库·华为云·云计算
百***24371 小时前
GPT5.1 vs Gemini 3.0 Pro 全维度对比及快速接入实战
大数据·人工智能·gpt
天远Date Lab1 小时前
Java微服务实战:聚合型“全能小微企业报告”接口的调用与数据清洗
java·大数据·python·微服务