机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类算法是一种常用的无监督学习算法,用于将相似的数据点分组为聚类。

其步骤如下:

  1. 初始化:选择聚类数K,随机选取K个聚类中心。

  2. 计算距离:计算每个数据点与K个聚类中心的距离,将其分配到距离最近的聚类中心所在的聚类。

  3. 更新聚类中心:对于每个聚类,计算所有数据点的平均值,并将其作为新的聚类中心。

  4. 重复步骤2-3,直到聚类中心不再发生变化。

K-均值聚类算法的优点包括简单易懂、计算复杂度低、可扩展性好等。

然而,它也存在一些缺点:

  1. 对初始值敏感:因为初始聚类中心是随机选择的,因此可能导致聚类结果不稳定,需要多次运行算法才能确保得到较好的结果。

  2. 需要事先确定聚类数K:聚类数K需要提前确定,而在实际应用中往往无法确定最佳K值。因此,可能需要尝试多个K值才能找到最佳聚类结果。

  3. 受异常值影响:K-均值聚类算法对异常值敏感,可能会将其分配到错误的聚类中心,从而影响聚类结果。

  4. 只适用于连续型变量:K-均值聚类算法只能处理连续型变量,无法处理分类变量或文本数据。

总之,K-均值聚类算法在某些情况下是非常有用的,但在其他情况下可能不太适合。因此,在选择聚类算法时,需要根据实际情况进行综合考虑。

相关推荐
superman超哥1 小时前
仓颉语言中基本数据类型的深度剖析与工程实践
c语言·开发语言·python·算法·仓颉
Learner__Q2 小时前
每天五分钟:滑动窗口-LeetCode高频题解析_day3
python·算法·leetcode
阿昭L2 小时前
leetcode链表相交
算法·leetcode·链表
闻缺陷则喜何志丹2 小时前
【计算几何】仿射变换与齐次矩阵
c++·数学·算法·矩阵·计算几何
liuyao_xianhui2 小时前
0~n-1中缺失的数字_优选算法(二分查找)
算法
weixin_409383123 小时前
在kaggle训练Qwen/Qwen2.5-1.5B-Instruct 通过中二时期qq空间记录作为训练数据 训练出中二的模型为目标 第一次训练 好像太二了
人工智能·深度学习·机器学习·qwen
长桥夜波3 小时前
【第二十四周】文献阅读-第一人称下的手势识别(1)
机器学习
hmbbcsm3 小时前
python做题小记(八)
开发语言·c++·算法
机器学习之心3 小时前
基于Stacking集成学习算法的数据回归预测(4种基学习器PLS、SVM、BP、RF,元学习器LSBoost)MATLAB代码
算法·回归·集成学习·stacking集成学习
图像生成小菜鸟3 小时前
Score Based diffusion model 数学推导
算法·机器学习·概率论