机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类算法是一种常用的无监督学习算法,用于将相似的数据点分组为聚类。

其步骤如下:

  1. 初始化:选择聚类数K,随机选取K个聚类中心。

  2. 计算距离:计算每个数据点与K个聚类中心的距离,将其分配到距离最近的聚类中心所在的聚类。

  3. 更新聚类中心:对于每个聚类,计算所有数据点的平均值,并将其作为新的聚类中心。

  4. 重复步骤2-3,直到聚类中心不再发生变化。

K-均值聚类算法的优点包括简单易懂、计算复杂度低、可扩展性好等。

然而,它也存在一些缺点:

  1. 对初始值敏感:因为初始聚类中心是随机选择的,因此可能导致聚类结果不稳定,需要多次运行算法才能确保得到较好的结果。

  2. 需要事先确定聚类数K:聚类数K需要提前确定,而在实际应用中往往无法确定最佳K值。因此,可能需要尝试多个K值才能找到最佳聚类结果。

  3. 受异常值影响:K-均值聚类算法对异常值敏感,可能会将其分配到错误的聚类中心,从而影响聚类结果。

  4. 只适用于连续型变量:K-均值聚类算法只能处理连续型变量,无法处理分类变量或文本数据。

总之,K-均值聚类算法在某些情况下是非常有用的,但在其他情况下可能不太适合。因此,在选择聚类算法时,需要根据实际情况进行综合考虑。

相关推荐
剪一朵云爱着5 小时前
力扣81. 搜索旋转排序数组 II
算法·leetcode·职场和发展
报错小能手7 小时前
刷题日常 5 二叉树最大深度
算法
Greedy Alg8 小时前
LeetCode 84. 柱状图中最大的矩形(困难)
算法
im_AMBER8 小时前
Leetcode 52
笔记·学习·算法·leetcode
小欣加油8 小时前
leetcode 946 验证栈序列
c++·算法·leetcode·职场和发展
gorgeous(๑>؂<๑)8 小时前
【ICLR26匿名投稿】OneTrackerV2:统一多模态目标跟踪的“通才”模型
人工智能·机器学习·计算机视觉·目标跟踪
周杰伦_Jay8 小时前
【智能体(Agent)技术深度解析】从架构到实现细节,核心是实现“感知环境→处理信息→决策行动→影响环境”的闭环
人工智能·机器学习·微服务·架构·golang·数据挖掘
包饭厅咸鱼8 小时前
PaddleOCR----制作数据集,模型训练,验证 QT部署(未完成)
算法
无敌最俊朗@9 小时前
C++ 并发与同步速查笔记(整理版)
开发语言·c++·算法