机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类算法是一种常用的无监督学习算法,用于将相似的数据点分组为聚类。

其步骤如下:

  1. 初始化:选择聚类数K,随机选取K个聚类中心。

  2. 计算距离:计算每个数据点与K个聚类中心的距离,将其分配到距离最近的聚类中心所在的聚类。

  3. 更新聚类中心:对于每个聚类,计算所有数据点的平均值,并将其作为新的聚类中心。

  4. 重复步骤2-3,直到聚类中心不再发生变化。

K-均值聚类算法的优点包括简单易懂、计算复杂度低、可扩展性好等。

然而,它也存在一些缺点:

  1. 对初始值敏感:因为初始聚类中心是随机选择的,因此可能导致聚类结果不稳定,需要多次运行算法才能确保得到较好的结果。

  2. 需要事先确定聚类数K:聚类数K需要提前确定,而在实际应用中往往无法确定最佳K值。因此,可能需要尝试多个K值才能找到最佳聚类结果。

  3. 受异常值影响:K-均值聚类算法对异常值敏感,可能会将其分配到错误的聚类中心,从而影响聚类结果。

  4. 只适用于连续型变量:K-均值聚类算法只能处理连续型变量,无法处理分类变量或文本数据。

总之,K-均值聚类算法在某些情况下是非常有用的,但在其他情况下可能不太适合。因此,在选择聚类算法时,需要根据实际情况进行综合考虑。

相关推荐
wearegogog1235 小时前
基于 MATLAB 的卡尔曼滤波器实现,用于消除噪声并估算信号
前端·算法·matlab
一只小小汤圆5 小时前
几何算法库
算法
Evand J5 小时前
【2026课题推荐】DOA定位——MUSIC算法进行多传感器协同目标定位。附MATLAB例程运行结果
开发语言·算法·matlab
leo__5206 小时前
基于MATLAB的交互式多模型跟踪算法(IMM)实现
人工智能·算法·matlab
忆锦紫6 小时前
图像增强算法:Gamma映射算法及MATLAB实现
开发语言·算法·matlab
t198751286 小时前
基于自适应Chirplet变换的雷达回波微多普勒特征提取
算法
guygg886 小时前
采用PSO算法优化PID参数,通过调用Simulink和PSO使得ITAE标准最小化
算法
老鼠只爱大米6 小时前
LeetCode算法题详解 239:滑动窗口最大值
算法·leetcode·双端队列·滑动窗口·滑动窗口最大值·单调队列
知乎的哥廷根数学学派6 小时前
基于多模态特征融合和可解释性深度学习的工业压缩机异常分类与预测性维护智能诊断(Python)
网络·人工智能·pytorch·python·深度学习·机器学习·分类
mit6.8247 小时前
序列化|质数筛|tips|回文dp
算法