机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类算法是一种常用的无监督学习算法,用于将相似的数据点分组为聚类。

其步骤如下:

  1. 初始化:选择聚类数K,随机选取K个聚类中心。

  2. 计算距离:计算每个数据点与K个聚类中心的距离,将其分配到距离最近的聚类中心所在的聚类。

  3. 更新聚类中心:对于每个聚类,计算所有数据点的平均值,并将其作为新的聚类中心。

  4. 重复步骤2-3,直到聚类中心不再发生变化。

K-均值聚类算法的优点包括简单易懂、计算复杂度低、可扩展性好等。

然而,它也存在一些缺点:

  1. 对初始值敏感:因为初始聚类中心是随机选择的,因此可能导致聚类结果不稳定,需要多次运行算法才能确保得到较好的结果。

  2. 需要事先确定聚类数K:聚类数K需要提前确定,而在实际应用中往往无法确定最佳K值。因此,可能需要尝试多个K值才能找到最佳聚类结果。

  3. 受异常值影响:K-均值聚类算法对异常值敏感,可能会将其分配到错误的聚类中心,从而影响聚类结果。

  4. 只适用于连续型变量:K-均值聚类算法只能处理连续型变量,无法处理分类变量或文本数据。

总之,K-均值聚类算法在某些情况下是非常有用的,但在其他情况下可能不太适合。因此,在选择聚类算法时,需要根据实际情况进行综合考虑。

相关推荐
SHIPKING39335 分钟前
【机器学习&深度学习】什么是下游任务模型?
人工智能·深度学习·机器学习
巴伦是只猫41 分钟前
【机器学习笔记Ⅰ】11 多项式回归
笔记·机器学习·回归
写代码的小球3 小时前
求模运算符c
算法
巴伦是只猫6 小时前
【机器学习笔记Ⅰ】13 正则化代价函数
人工智能·笔记·机器学习
大千AI助手6 小时前
DTW模版匹配:弹性对齐的时间序列相似度度量算法
人工智能·算法·机器学习·数据挖掘·模版匹配·dtw模版匹配
LCG元7 小时前
自动驾驶感知模块的多模态数据融合:时序同步与空间对齐的框架解析
人工智能·机器学习·自动驾驶
YuTaoShao7 小时前
【LeetCode 热题 100】48. 旋转图像——转置+水平翻转
java·算法·leetcode·职场和发展
生态遥感监测笔记8 小时前
GEE利用已有土地利用数据选取样本点并进行分类
人工智能·算法·机器学习·分类·数据挖掘
Tony沈哲8 小时前
macOS 上为 Compose Desktop 构建跨架构图像处理 dylib:OpenCV + libraw + libheif 实践指南
opencv·算法