机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类算法是一种常用的无监督学习算法,用于将相似的数据点分组为聚类。

其步骤如下:

  1. 初始化:选择聚类数K,随机选取K个聚类中心。

  2. 计算距离:计算每个数据点与K个聚类中心的距离,将其分配到距离最近的聚类中心所在的聚类。

  3. 更新聚类中心:对于每个聚类,计算所有数据点的平均值,并将其作为新的聚类中心。

  4. 重复步骤2-3,直到聚类中心不再发生变化。

K-均值聚类算法的优点包括简单易懂、计算复杂度低、可扩展性好等。

然而,它也存在一些缺点:

  1. 对初始值敏感:因为初始聚类中心是随机选择的,因此可能导致聚类结果不稳定,需要多次运行算法才能确保得到较好的结果。

  2. 需要事先确定聚类数K:聚类数K需要提前确定,而在实际应用中往往无法确定最佳K值。因此,可能需要尝试多个K值才能找到最佳聚类结果。

  3. 受异常值影响:K-均值聚类算法对异常值敏感,可能会将其分配到错误的聚类中心,从而影响聚类结果。

  4. 只适用于连续型变量:K-均值聚类算法只能处理连续型变量,无法处理分类变量或文本数据。

总之,K-均值聚类算法在某些情况下是非常有用的,但在其他情况下可能不太适合。因此,在选择聚类算法时,需要根据实际情况进行综合考虑。

相关推荐
embrace9913 小时前
【C语言学习】结构体详解
android·c语言·开发语言·数据结构·学习·算法·青少年编程
Ayanami_Reii13 小时前
基础数学算法-开关问题
数学·算法·高斯消元
稚辉君.MCA_P8_Java13 小时前
通义 Go 语言实现的插入排序(Insertion Sort)
数据结构·后端·算法·架构·golang
稚辉君.MCA_P8_Java14 小时前
Gemini永久会员 Go 实现动态规划
数据结构·后端·算法·golang·动态规划
快手技术14 小时前
快手 & 南大发布代码智能“指南针”,重新定义 AI 编程能力评估体系
算法
Murphy_lx15 小时前
C++ std_stringstream
开发语言·c++·算法
yLDeveloper15 小时前
致深度学习小白:一文理解拟合问题与经典解决方案
机器学习·dive into deep learning
CoovallyAIHub15 小时前
超越YOLOv8/v11!自研RKM-YOLO为输电线路巡检精度、速度双提升
深度学习·算法·计算机视觉
哭泣方源炼蛊15 小时前
HAUE 新生周赛(七)题解
数据结构·c++·算法
q***649716 小时前
SpringMVC 请求参数接收
前端·javascript·算法