机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类算法是一种常用的无监督学习算法,用于将相似的数据点分组为聚类。

其步骤如下:

  1. 初始化:选择聚类数K,随机选取K个聚类中心。

  2. 计算距离:计算每个数据点与K个聚类中心的距离,将其分配到距离最近的聚类中心所在的聚类。

  3. 更新聚类中心:对于每个聚类,计算所有数据点的平均值,并将其作为新的聚类中心。

  4. 重复步骤2-3,直到聚类中心不再发生变化。

K-均值聚类算法的优点包括简单易懂、计算复杂度低、可扩展性好等。

然而,它也存在一些缺点:

  1. 对初始值敏感:因为初始聚类中心是随机选择的,因此可能导致聚类结果不稳定,需要多次运行算法才能确保得到较好的结果。

  2. 需要事先确定聚类数K:聚类数K需要提前确定,而在实际应用中往往无法确定最佳K值。因此,可能需要尝试多个K值才能找到最佳聚类结果。

  3. 受异常值影响:K-均值聚类算法对异常值敏感,可能会将其分配到错误的聚类中心,从而影响聚类结果。

  4. 只适用于连续型变量:K-均值聚类算法只能处理连续型变量,无法处理分类变量或文本数据。

总之,K-均值聚类算法在某些情况下是非常有用的,但在其他情况下可能不太适合。因此,在选择聚类算法时,需要根据实际情况进行综合考虑。

相关推荐
毅炼几秒前
hot100打卡——day17
java·数据结构·算法·leetcode·深度优先
Tisfy4 分钟前
LeetCode 3010.将数组分成最小总代价的子数组 I:排序 OR 维护最小次小
算法·leetcode·题解·排序·最小次小值
Learn Beyond Limits8 分钟前
文献阅读:A Probabilistic U-Net for Segmentation of Ambiguous Images
论文阅读·人工智能·深度学习·算法·机器学习·计算机视觉·ai
m0_7369191020 分钟前
编译器命令选项优化
开发语言·c++·算法
naruto_lnq27 分钟前
C++中的工厂方法模式
开发语言·c++·算法
千逐-沐风36 分钟前
SMU-ACM2026冬训周报2nd
算法
m0_748233171 小时前
C#与C语言:5大核心语法共性
java·jvm·算法
自可乐1 小时前
LangGraph从入门到精通:构建智能Agent的完整指南
人工智能·python·机器学习
痴儿哈哈1 小时前
C++与硬件交互编程
开发语言·c++·算法
小O的算法实验室1 小时前
2024年ESWA SCI1区TOP,异构无人机配送问题的集成多目标优化方法,深度解析+性能实测
算法·论文复现·智能算法·智能算法改进