NLP实践——使用Llama-2进行中文对话

NLP实践------使用Llama-2进行中文对话

  • [1. 前言](#1. 前言)
  • [2. 利用prompt](#2. 利用prompt)
  • [3. 利用Logit Processor](#3. 利用Logit Processor)
    • [3.1 修改1](#3.1 修改1)
    • [3.2 修改2](#3.2 修改2)
    • [3.3 修改3](#3.3 修改3)
    • [3.4 修改4](#3.4 修改4)

1. 前言

在之前的博客 NLP实践------Llama-2 多轮对话prompt构建中,介绍了如何构建多轮对话的prompt,本文将介绍如何使用Llama-2进行中文对话。

现有的很多项目,在开源的Llama-2基础上,进行了中文场景的训练,然而Llama-2本身就具有多语种的能力,理论上是可以直接运用于中文场景的。

本文所举例使用的模型为Llama-2-7b-chat-hf。

2. 利用prompt

首先可以想到的是,使用prompt。可是即便是在prompt中添加了要求模型回答中文的提示,模型仍然回答的是英文。

从对话内容可以看到,模型可以理解用户的问题,却没有输出中文:

复制代码
>> '你好'
>> "Hello! 😊 I'm here to help answer any questions you may have. Is there something specific you'd like to know or discuss? Please feel free to ask, and I'll do my best to assist you. 🤖"

3. 利用Logit Processor

在之前另一篇博客 以Llama-2为例,在生成模型中使用自定义LogitsProcessor中,介绍了怎样使用logits processor来改变生成过程中的概率,进而改变生成的结果。那么可以直接想到的是,把tokenizer中所有中文字符的概率调大一些,就可以强行要求模型生成中文了。

3.1 修改1

首先利用unicode范围获取常见的汉字:

python3 复制代码
import re
def is_chinese(word):
    """
    判断一个字符串是否为汉字
    """
    if re.match('[\u4e00-\u9fff]', word):
        return True
    else:
        return False

CHINESE_TOKEN_IDS = [token_id for token, token_id in tokenizer.vocab.items() if is_chinese(token)]

然后就可以实现一个processor来提高这些token对应的概率:

python3 复制代码
from transformers.generation.logits_process import LogitsProcessor, LogitsProcessorList

class ChineseLogitsProcessor(LogitsProcessor):
    """
    生成中文字符
    ---------------
    ver: 2023-08-02
    by: changhongyu
    """
    def __init__(self, 
                 chinese_token_id_list: List[int] = None,
                 alpha: float = 5):
        """
        :param chinese_token_id_list: 中文token的token的id列表
        :param alpha: 放大倍数
        """
        self.chinese_token_id_list = chinese_token_id_list
        self.alpha = alpha
    
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        for id_ in self.chinese_token_id_list:
            scores[:, id_] *= self.alpha
        return scores

在生成之前,按照之前博客中介绍的方法,创建processor:

python3 复制代码
logits_processor = LogitsProcessorList()
logits_processor.append(ChineseLogitsProcessor(CHINESE_TOKEN_IDS))

3.2 修改2

然而,模型却生成起来停不下了。这是因为没有将EOS token的概率也做相应的放大。

python3 复制代码
CHINESE_TOKEN_IDS.append(tokenizer.eos_token_id)

这下,模型可以输出中文了:

复制代码
>> '你好'
>> '好的好的大家好的我是一个智能问题机器人我可以回应你的问题请问你有任何问题或需要我的服务'

可是看起来好像哪里怪怪的,原来是没有标点。

3.3 修改3

既然没有标点,那我们再把标点符号的概率也放大就好了:

python3 复制代码
puncs = [',', '。', '?', '!', '"', '"', ':', ',', '.', '?', '!', '"', "'", ':']
CHINESE_TOKEN_IDS = [token_id for token, token_id in tokenizer.vocab.items() if is_chinese(token)]
CHINESE_TOKEN_IDS.extend(tokenizer.convert_tokens_to_ids(puncs))
CHINESE_TOKEN_IDS.append(tokenizer.eos_token_id)

现在,eos也有了,标点符号也有了,然而还是出意外了:

复制代码
>> '你好'
>> '::你好!我是一个智能问题机器人,我的任务是回应用户的问题。请问你有任何问题?'

3.4 修改4

现在模型倒是可以说中文,也带标点了,但标点出现在了最开头。这样的话,我们可以再添加一个processor,不让这些标点出现在最开始就可以了。

python3 复制代码
class SuppressSpecificBOSTokenLogitsProcessor(LogitsProcessor):
    """
    防止生成的第一个token是某些特定的token
    ---------------
    ver: 2023-08-02
    by: changhongyu
    """
    def __init__(self, bad_bos_token_id_list: List[int] = None):
        """
        :param bad_bos_token_id_list: 不可以作为第一个token的token的id列表
        """
        self.bad_bos_token_id_list = bad_bos_token_id_list
    
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        new_token_len = input_ids.shape[-1] - current_token_len
        if new_token_len == 0:
            for id_ in self.bad_bos_token_id_list:
                scores[:, id_] = -float('inf')
        return scores

将两个processor放在一起:

python3 复制代码
logits_processor = LogitsProcessorList()
logits_processor.append(ChineseLogitsProcessor(CHINESE_TOKEN_IDS))
logits_processor.append(SuppressSpecificBOSTokenLogitsProcessor([tokenizer.convert_tokens_to_ids(punc) for punc in puncs]))

终于,可以让模型实现中文对话了:

复制代码
>> '你好'
>> '好的,好的!你好!对不起,我不知道你问的问题,请问你想问些事情?'

虽然回答的还是有点奇怪,但使用中文与模型进行对话的目的,也的的确确是达到了。

相关推荐
DisonTangor8 小时前
【小米拥抱开源】小米MiMo团队开源309B专家混合模型——MiMo-V2-Flash
人工智能·开源·aigc
hxxjxw8 小时前
Pytorch分布式训练/多卡训练(六) —— Expert Parallelism (MoE的特殊策略)
人工智能·pytorch·python
Robot侠9 小时前
视觉语言导航从入门到精通(一)
网络·人工智能·microsoft·llm·vln
掘金一周9 小时前
【用户行为监控】别只做工具人了!手把手带你写一个前端埋点统计 SDK | 掘金一周 12.18
前端·人工智能·后端
神州问学9 小时前
世界模型:AI的下一个里程碑
人工智能
zhaodiandiandian9 小时前
AI深耕产业腹地 新质生产力的实践路径与价值彰显
人工智能
古德new9 小时前
openFuyao AI大数据场景加速技术实践指南
大数据·人工智能
youcans_9 小时前
【医学影像 AI】FunBench:评估多模态大语言模型的眼底影像解读能力
论文阅读·人工智能·大语言模型·多模态·眼底图像
dagouaofei9 小时前
PPT AI生成实测报告:哪些工具值得长期使用?
人工智能·python·powerpoint
蓝桉~MLGT9 小时前
Ai-Agent学习历程—— Agent认知框架
人工智能·学习