【sklearn】回归模型常规建模流程

模型训练pipeline

基于数十种统计类型特征,构建LR回归模型。代码逻辑包含:样本切分、特征预处理、模型训练、模型评估、特征重要性的可视化。

步骤一:导入所需库

复制代码
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, PolynomialFeatures
from sklearn.metrics import mean_squared_error, r2_score

步骤二:读取数据

复制代码
data = pd.read_csv('data.csv')

步骤三:数据预处理

复制代码
# 去除缺失值
data.dropna(inplace=True)

# 划分自变量和因变量
X = data.iloc[:, :-1]
y = data.iloc[:, -1]

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)

# 构建pipeline
pipeline = Pipeline([
    ('scaler', StandardScaler()),
    ('poly', PolynomialFeatures(degree=2, include_bias=False)),
    ('reg', LinearRegression())
])

# 训练模型
pipeline.fit(X_train, y_train)

# 预测结果
y_pred = pipeline.predict(X_test)

步骤四:模型评估

复制代码
# 均方误差
mse = mean_squared_error(y_test, y_pred)

# R2值
r2 = r2_score(y_test, y_pred)

print('MSE: %.3f' % mse)
print('R2 score: %.3f' % r2)

步骤五:特征重要性的可视化

复制代码
# 获取特征重要性
importance = pipeline.named_steps['reg'].coef_

# 将特征重要性与对应特征名对应
feature_names = pipeline.named_steps['poly'].get_feature_names(X.columns)
feature_importance = pd.DataFrame({'Feature': feature_names, 'Importance': importance})
feature_importance = feature_importance.sort_values('Importance', ascending=False)

# 绘制水平条形图
plt.figure(figsize=(10, 8))
plt.barh(feature_importance['Feature'], feature_importance['Importance'])
plt.title('Feature importance')
plt.xlabel('Importance')
plt.ylabel('Feature')
plt.show()
相关推荐
gloomyfish3 小时前
【最新技术】多模态零样本工业缺陷检测概述
人工智能·算法·计算机视觉
Ryan-Lily3 小时前
具身智能企业搜集
人工智能
山沐与山3 小时前
【AI】大语言模型基础知识详解
人工智能·语言模型·自然语言处理
画***林3 小时前
品雷家林《头白山黄》:情韵悠长的诗意华章
人工智能
春日见3 小时前
虚拟机上由于网络问题无法正常git clone
linux·服务器·网络·人工智能·git·ubuntu·debug
受之以蒙3 小时前
智能目标检测:用 Rust + dora-rs + yolo 构建“机器之眼”
人工智能·笔记·rust
薛不痒3 小时前
机器学习算法之决策树
人工智能·决策树·机器学习
Mintopia3 小时前
🎩 AIGC技术提升Web服务效率的量化分析:从成本到体验
人工智能·llm·ai编程
哥只是传说中的小白3 小时前
GPT Image 1.5 API——0.02/张! GrsAi国内源头直连,便宜稳定(附快速接入教程)
人工智能
云空3 小时前
《基于RK3588+ToF的环境颜色区域位置识别方案研究》
人工智能·嵌入式硬件·机器人