【sklearn】回归模型常规建模流程

模型训练pipeline

基于数十种统计类型特征,构建LR回归模型。代码逻辑包含:样本切分、特征预处理、模型训练、模型评估、特征重要性的可视化。

步骤一:导入所需库

复制代码
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, PolynomialFeatures
from sklearn.metrics import mean_squared_error, r2_score

步骤二:读取数据

复制代码
data = pd.read_csv('data.csv')

步骤三:数据预处理

复制代码
# 去除缺失值
data.dropna(inplace=True)

# 划分自变量和因变量
X = data.iloc[:, :-1]
y = data.iloc[:, -1]

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)

# 构建pipeline
pipeline = Pipeline([
    ('scaler', StandardScaler()),
    ('poly', PolynomialFeatures(degree=2, include_bias=False)),
    ('reg', LinearRegression())
])

# 训练模型
pipeline.fit(X_train, y_train)

# 预测结果
y_pred = pipeline.predict(X_test)

步骤四:模型评估

复制代码
# 均方误差
mse = mean_squared_error(y_test, y_pred)

# R2值
r2 = r2_score(y_test, y_pred)

print('MSE: %.3f' % mse)
print('R2 score: %.3f' % r2)

步骤五:特征重要性的可视化

复制代码
# 获取特征重要性
importance = pipeline.named_steps['reg'].coef_

# 将特征重要性与对应特征名对应
feature_names = pipeline.named_steps['poly'].get_feature_names(X.columns)
feature_importance = pd.DataFrame({'Feature': feature_names, 'Importance': importance})
feature_importance = feature_importance.sort_values('Importance', ascending=False)

# 绘制水平条形图
plt.figure(figsize=(10, 8))
plt.barh(feature_importance['Feature'], feature_importance['Importance'])
plt.title('Feature importance')
plt.xlabel('Importance')
plt.ylabel('Feature')
plt.show()
相关推荐
nvd118 分钟前
FastMCP 开发指南: 5分钟入门
人工智能·python
wp123_126 分钟前
反激应用1:1贴片耦合电感选择:Coilcraft LPD3015-473MR vs 国产兼容 TONEVEE CDD3015-473M
人工智能·制造
不错就是对26 分钟前
【agent-lightning】 - 2_使用 Agent-lightning 训练第一个智能体
人工智能·深度学习·神经网络·自然语言处理·chatgpt·transformer·vllm
zhengfei61130 分钟前
AI渗透工具—Shannon完全自主的AI渗透测试工具
人工智能·深度学习·web安全·知识图谱·测试覆盖率·安全性测试·威胁分析
愚公搬代码32 分钟前
【愚公系列】《AI+直播营销》004-重视直播营销,打造直播竞争力(直播活动的基本原理)
人工智能
哥本哈士奇37 分钟前
简单的神经网络计算过程 - 正负判断
人工智能·深度学习·神经网络
自动驾驶小学生43 分钟前
Transformer和LLM前沿内容(3):LLM Post-Training
人工智能·深度学习·transformer
imbackneverdie1 小时前
从零到一,如何用AI高效构建国自然申请书初稿?
人工智能·自然语言处理·aigc·科研·ai写作·学术·国家自然科学基金
Mike_detailing1 小时前
Tensors (张量)
人工智能·pytorch·深度学习
三木今天学习了嘛1 小时前
【Archived 2025】
人工智能