【sklearn】回归模型常规建模流程

模型训练pipeline

基于数十种统计类型特征,构建LR回归模型。代码逻辑包含:样本切分、特征预处理、模型训练、模型评估、特征重要性的可视化。

步骤一:导入所需库

复制代码
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, PolynomialFeatures
from sklearn.metrics import mean_squared_error, r2_score

步骤二:读取数据

复制代码
data = pd.read_csv('data.csv')

步骤三:数据预处理

复制代码
# 去除缺失值
data.dropna(inplace=True)

# 划分自变量和因变量
X = data.iloc[:, :-1]
y = data.iloc[:, -1]

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)

# 构建pipeline
pipeline = Pipeline([
    ('scaler', StandardScaler()),
    ('poly', PolynomialFeatures(degree=2, include_bias=False)),
    ('reg', LinearRegression())
])

# 训练模型
pipeline.fit(X_train, y_train)

# 预测结果
y_pred = pipeline.predict(X_test)

步骤四:模型评估

复制代码
# 均方误差
mse = mean_squared_error(y_test, y_pred)

# R2值
r2 = r2_score(y_test, y_pred)

print('MSE: %.3f' % mse)
print('R2 score: %.3f' % r2)

步骤五:特征重要性的可视化

复制代码
# 获取特征重要性
importance = pipeline.named_steps['reg'].coef_

# 将特征重要性与对应特征名对应
feature_names = pipeline.named_steps['poly'].get_feature_names(X.columns)
feature_importance = pd.DataFrame({'Feature': feature_names, 'Importance': importance})
feature_importance = feature_importance.sort_values('Importance', ascending=False)

# 绘制水平条形图
plt.figure(figsize=(10, 8))
plt.barh(feature_importance['Feature'], feature_importance['Importance'])
plt.title('Feature importance')
plt.xlabel('Importance')
plt.ylabel('Feature')
plt.show()
相关推荐
逐鹿人生12 分钟前
【人工智能工程师系列】一【全面Python3.8入门+进阶】ch.3
人工智能
杨浦老苏23 分钟前
本地优先的AI个人助手Moltis
人工智能·docker·ai·群晖
OBS插件网29 分钟前
OBS直播如何给人脸加口罩特效?OBS口罩特效插件下载安装教程
人工智能·数码相机·语音识别·产品经理
LitchiCheng34 分钟前
Mujoco 如何添加 Apriltag 并获得相机视野进行识别
人工智能·python·开源
想用offer打牌43 分钟前
一站式了解Agent Skills
人工智能·后端·ai编程
一切尽在,你来1 小时前
LangGraph快速入门
人工智能·python·langchain·ai编程
阿杰学AI2 小时前
AI核心知识110—大语言模型之 AI Collaboration Manager(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·人机交互·ai协作管理员
SCLchuck2 小时前
人工智能-概率密度估计
人工智能·python·概率论·概率密度估计
王解2 小时前
AI Agent记忆模块进化史:从临时缓存到认知架构的设计范式
人工智能·缓存·架构
琅琊榜首20202 小时前
AI+编程实战:小说高效改编短剧全指南
人工智能