图像分段线性变换

图像分段线性变换(Piecewise Linear Transformation)是一种图像处理技术,它通过对不同区域的像素值应用不同的线性变换来调整图像的对比度和亮度。这通常用于增强图像中特定区域的细节或调整图像的整体外观。数学上,分段线性变换可以表示为以下形式:

对于输入图像中的每个像素点 ( x , y ) (x, y) (x,y),其输出值 f ′ ( x , y ) f'(x, y) f′(x,y) 可以通过以下分段线性函数来计算:
f ′ ( x , y ) = { a 1 ⋅ f ( x , y ) + b 1 , if f ( x , y ) < x 1 a 2 ⋅ f ( x , y ) + b 2 , if x 1 ≤ f ( x , y ) < x 2 ⋮ a n ⋅ f ( x , y ) + b n , if x n − 1 ≤ f ( x , y ) < x n f'(x, y) = \begin{cases} a_1 \cdot f(x, y) + b_1, & \text{if } f(x, y) < x_1 \\ a_2 \cdot f(x, y) + b_2, & \text{if } x_1 \leq f(x, y) < x_2 \\ \vdots \\ a_n \cdot f(x, y) + b_n, & \text{if } x_{n-1} \leq f(x, y) < x_n \\ \end{cases} f′(x,y)=⎩ ⎨ ⎧a1⋅f(x,y)+b1,a2⋅f(x,y)+b2,⋮an⋅f(x,y)+bn,if f(x,y)<x1if x1≤f(x,y)<x2if xn−1≤f(x,y)<xn

其中, f ( x , y ) f(x, y) f(x,y) 是原始图像中像素点 ( x , y ) (x, y) (x,y) 的灰度值, ( x 1 , x 2 , ... , x n ) (x_1, x_2, \ldots, x_n) (x1,x2,...,xn) 是分段点, ( a 1 , a 2 , ... , a n ) (a_1, a_2, \ldots, a_n) (a1,a2,...,an) 是斜率, ( b 1 , b 2 , ... , b n ) (b_1, b_2, \ldots, b_n) (b1,b2,...,bn) 是截距。

下面是一个使用OpenCV库进行图像分段线性变换的Python代码示例:

python 复制代码
import cv2
import numpy as np

def piecewise_linear_transform(image, breakpoints, slopes, intercepts):
    # 创建一个空白图像,用于存储变换后的结果
    transformed_image = np.zeros_like(image)

    for i in range(len(breakpoints) + 1):
        lower_bound = breakpoints[i - 1] if i > 0 else 0
        upper_bound = breakpoints[i] if i < len(breakpoints) else 255

        # 对当前分段内的像素应用线性变换
        mask = (image >= lower_bound) & (image < upper_bound)
        transformed_image[mask] = slopes[i] * image[mask] + intercepts[i]

    return transformed_image

# 读取图像
input_image = cv2.imread('input.jpg', cv2.IMREAD_GRAYSCALE)

# 定义分段点、斜率和截距
breakpoints = [100, 150]
slopes = [1.5, 0.7, 1.2]
intercepts = [-100, 50, 0]

# 应用分段线性变换
output_image = piecewise_linear_transform(input_image, breakpoints, slopes, intercepts)

# 显示原始图像和变换后的图像
cv2.imshow('Original Image', input_image)
cv2.imshow('Transformed Image', output_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
相关推荐
小程故事多_801 分钟前
开源界核弹级输出!蚂蚁 Agentar-Scale-SQL 凭 “编排式扩展” 技术,成为 Text-to-SQL 天花板
数据库·人工智能·sql·开源·aigc·embedding
北邮刘老师10 分钟前
【智能体互联协议解析】ACPs/AIP为什么还在用“落后”的“中心化”架构?
网络·人工智能·架构·大模型·智能体·智能体互联网
studytosky12 分钟前
深度学习理论与实战:反向传播、参数初始化与优化算法全解析
人工智能·python·深度学习·算法·分类·matplotlib
lisw0528 分钟前
人工智能伦理与科技向善有何区别与联系?
人工智能·机器学习
橙露29 分钟前
二通道数显控制器:工业测控的“双管家”,视觉检测中的隐形助力
人工智能·计算机视觉·视觉检测
彬匠科技BinJiang_tech35 分钟前
跨境电商物流选择指南:从痛点分析到智能决策
人工智能·erp·tms
用户85996816776937 分钟前
基于大模型LLM的开发与编程教程
人工智能
张人玉1 小时前
图像处理函数与形态学操作笔记(含 Halcon 示例)
图像处理·人工智能·笔记·halcon
北京耐用通信1 小时前
耐达讯自动化网关:用Profinet唤醒沉睡的DeviceNet流量计,省下60%改造费!
人工智能·科技·物联网·网络协议·自动化·信息与通信
南方者1 小时前
AI 驱动的异构 ETL 环境数据血缘管理系统
人工智能