sklearn.tree.export_graphviz

cpp 复制代码
sklearn.tree.export_graphviz(decision_tree,              
                             out_file=None,              
                             *,
                             max_depth=None,             
                             feature_names=None,         
                             class_names=None,           
                             label='all',                
                             filled=False,               
                             leaves_parallel=False,      
                             impurity=True,              
                             node_ids=False,             
                             proportion=False,           
                             rotate=False,               
                             rounded=False,              
                             special_characters=False,   
                             precision=3,                
                             fontname='helvetica'        
)
  • decision_tree, 决策树分类器,要导出到 GraphViz的决策树
  • out_file=None, 要导出到 GraphViz 的决策树
  • *,
  • max_depth=None, 整数,默认=无。表示的最大深度。如果没有,则完全生成树。
  • feature_names=None, 每个函数的名称。如果 None 将使用通用名称("feature_0"、"feature_1"、...)。
  • class_names=None, 每个目标类别的名称按数字升序排列。仅与分类相关,不支持multi-output。如果 True ,则显示类名的符号表示。
  • label='all', {'all', 'root', 'none'},默认='全部';是否显示杂质标签等。选项包括'all' 显示在每个节点,'root' 仅显示在顶部根节点,或'none' 不显示在任何节点。
  • filled=False, 布尔,默认=假。当设置为 True 时,绘制节点以指示分类的多数类、回归值的极值或 multi-output 的节点纯度。
  • leaves_parallel=False, 布尔,默认=假。当设置为 True 时,在树的底部绘制所有叶节点。
  • impurity=True, 布尔,默认=真。当设置为 True 时,显示每个节点的杂质。
  • node_ids=False, 布尔,默认=假。当设置为 True 时,在每个节点上显示 ID 号。
  • proportion=False, 布尔,默认=假。当设置为 True 时,将 'values' 和/或 'samples' 的显示分别更改为比例和百分比。
  • rotate=False, 布尔,默认=假。当设置为 True 时,将树从左到右而不是自上而下。
  • rounded=False, 布尔,默认=假。当设置为 True 时,绘制圆角节点框。
  • special_characters=False, 布尔,默认=假。当设置为 False 时,忽略特殊字符以兼容 PostScript。
  • precision=3, 整数,默认=3。每个节点的杂质、阈值和值属性值中浮点精度的位数。
  • fontname='helvetica' str,默认='helvetica'。用于呈现文本的字体名称。
相关推荐
乐迪信息几秒前
乐迪信息:目标检测算法+AI摄像机:煤矿全场景识别方案
人工智能·物联网·算法·目标检测·目标跟踪·语音识别
学术小白人2 小时前
【EI会议征稿通知】2026年智能感知与自主控制国际学术会议(IPAC 2026)
人工智能·物联网·数据分析·区块链·能源
HyperAI超神经2 小时前
在线教程丨 David Baker 团队开源 RFdiffusion3,实现全原子蛋白质设计的生成式突破
人工智能·深度学习·学习·机器学习·ai·cpu·gpu
ASKED_20195 小时前
End-To-End之于推荐: Meta GRs & HSTU 生成式推荐革命之作
人工智能
liulanba5 小时前
AI Agent技术完整指南 第一部分:基础理论
数据库·人工智能·oracle
自动化代码美学5 小时前
【AI白皮书】AI应用运行时
人工智能
小CC吃豆子5 小时前
openGauss :核心定位 + 核心优势 + 适用场景
人工智能
一瞬祈望5 小时前
⭐ 深度学习入门体系(第 7 篇): 什么是损失函数?
人工智能·深度学习·cnn·损失函数
徐小夕@趣谈前端5 小时前
15k star的开源项目 Next AI Draw.io:AI 加持下的图表绘制工具
人工智能·开源·draw.io
优爱蛋白6 小时前
MMP-9(20-469) His Tag 蛋白:高活性可溶性催化结构域的研究工具
人工智能·健康医疗