sklearn.tree.export_graphviz

cpp 复制代码
sklearn.tree.export_graphviz(decision_tree,              
                             out_file=None,              
                             *,
                             max_depth=None,             
                             feature_names=None,         
                             class_names=None,           
                             label='all',                
                             filled=False,               
                             leaves_parallel=False,      
                             impurity=True,              
                             node_ids=False,             
                             proportion=False,           
                             rotate=False,               
                             rounded=False,              
                             special_characters=False,   
                             precision=3,                
                             fontname='helvetica'        
)
  • decision_tree, 决策树分类器,要导出到 GraphViz的决策树
  • out_file=None, 要导出到 GraphViz 的决策树
  • *,
  • max_depth=None, 整数,默认=无。表示的最大深度。如果没有,则完全生成树。
  • feature_names=None, 每个函数的名称。如果 None 将使用通用名称("feature_0"、"feature_1"、...)。
  • class_names=None, 每个目标类别的名称按数字升序排列。仅与分类相关,不支持multi-output。如果 True ,则显示类名的符号表示。
  • label='all', {'all', 'root', 'none'},默认='全部';是否显示杂质标签等。选项包括'all' 显示在每个节点,'root' 仅显示在顶部根节点,或'none' 不显示在任何节点。
  • filled=False, 布尔,默认=假。当设置为 True 时,绘制节点以指示分类的多数类、回归值的极值或 multi-output 的节点纯度。
  • leaves_parallel=False, 布尔,默认=假。当设置为 True 时,在树的底部绘制所有叶节点。
  • impurity=True, 布尔,默认=真。当设置为 True 时,显示每个节点的杂质。
  • node_ids=False, 布尔,默认=假。当设置为 True 时,在每个节点上显示 ID 号。
  • proportion=False, 布尔,默认=假。当设置为 True 时,将 'values' 和/或 'samples' 的显示分别更改为比例和百分比。
  • rotate=False, 布尔,默认=假。当设置为 True 时,将树从左到右而不是自上而下。
  • rounded=False, 布尔,默认=假。当设置为 True 时,绘制圆角节点框。
  • special_characters=False, 布尔,默认=假。当设置为 False 时,忽略特殊字符以兼容 PostScript。
  • precision=3, 整数,默认=3。每个节点的杂质、阈值和值属性值中浮点精度的位数。
  • fontname='helvetica' str,默认='helvetica'。用于呈现文本的字体名称。
相关推荐
说私域2 分钟前
基于开源AI大模型、AI智能名片与S2B2C商城小程序源码的用户价值引导与核心用户沉淀策略研究
人工智能·开源
亲持红叶3 分钟前
GLU 变种:ReGLU 、 GEGLU 、 SwiGLU
人工智能·深度学习·神经网络·激活函数
说私域3 分钟前
线上协同办公时代:以开源AI大模型等工具培养网感,拥抱职业变革
人工智能·开源
群联云防护小杜5 分钟前
深度隐匿源IP:高防+群联AI云防护防绕过实战
运维·服务器·前端·网络·人工智能·网络协议·tcp/ip
惜.己8 分钟前
使用python读取json数据,简单的处理成元组数组
开发语言·python·测试工具·json
摘星编程10 分钟前
构建智能客服Agent:从需求分析到生产部署
人工智能·需求分析·智能客服·agent开发·生产部署
不爱学习的YY酱13 分钟前
信息检索革命:Perplexica+cpolar打造你的专属智能搜索中枢
人工智能
whaosoft-1431 小时前
51c自动驾驶~合集7
人工智能
都叫我大帅哥1 小时前
Python的Optional:让你的代码优雅处理“空值”危机
python
曾几何时`3 小时前
基于python和neo4j构建知识图谱医药问答系统
python·知识图谱·neo4j