sklearn.tree.export_graphviz

cpp 复制代码
sklearn.tree.export_graphviz(decision_tree,              
                             out_file=None,              
                             *,
                             max_depth=None,             
                             feature_names=None,         
                             class_names=None,           
                             label='all',                
                             filled=False,               
                             leaves_parallel=False,      
                             impurity=True,              
                             node_ids=False,             
                             proportion=False,           
                             rotate=False,               
                             rounded=False,              
                             special_characters=False,   
                             precision=3,                
                             fontname='helvetica'        
)
  • decision_tree, 决策树分类器,要导出到 GraphViz的决策树
  • out_file=None, 要导出到 GraphViz 的决策树
  • *,
  • max_depth=None, 整数,默认=无。表示的最大深度。如果没有,则完全生成树。
  • feature_names=None, 每个函数的名称。如果 None 将使用通用名称("feature_0"、"feature_1"、...)。
  • class_names=None, 每个目标类别的名称按数字升序排列。仅与分类相关,不支持multi-output。如果 True ,则显示类名的符号表示。
  • label='all', {'all', 'root', 'none'},默认='全部';是否显示杂质标签等。选项包括'all' 显示在每个节点,'root' 仅显示在顶部根节点,或'none' 不显示在任何节点。
  • filled=False, 布尔,默认=假。当设置为 True 时,绘制节点以指示分类的多数类、回归值的极值或 multi-output 的节点纯度。
  • leaves_parallel=False, 布尔,默认=假。当设置为 True 时,在树的底部绘制所有叶节点。
  • impurity=True, 布尔,默认=真。当设置为 True 时,显示每个节点的杂质。
  • node_ids=False, 布尔,默认=假。当设置为 True 时,在每个节点上显示 ID 号。
  • proportion=False, 布尔,默认=假。当设置为 True 时,将 'values' 和/或 'samples' 的显示分别更改为比例和百分比。
  • rotate=False, 布尔,默认=假。当设置为 True 时,将树从左到右而不是自上而下。
  • rounded=False, 布尔,默认=假。当设置为 True 时,绘制圆角节点框。
  • special_characters=False, 布尔,默认=假。当设置为 False 时,忽略特殊字符以兼容 PostScript。
  • precision=3, 整数,默认=3。每个节点的杂质、阈值和值属性值中浮点精度的位数。
  • fontname='helvetica' str,默认='helvetica'。用于呈现文本的字体名称。
相关推荐
shangjian0072 小时前
AI-大语言模型LLM-Transformer架构4-多头注意力、掩码注意力、交叉注意力
人工智能·语言模型·transformer
努力犯错2 小时前
如何使用AI图片扩展器扩展图片边界:2026年完整指南
人工智能
晨非辰2 小时前
Linux权限管理速成:umask掩码/file透视/粘滞位防护15分钟精通,掌握权限减法与安全协作模型
linux·运维·服务器·c++·人工智能·后端
丝斯20113 小时前
AI学习笔记整理(63)——大模型对齐与强化学习
人工智能·笔记·学习
延凡科技6 小时前
无人机低空智能巡飞巡检平台:全域感知与智能决策的低空作业中枢
大数据·人工智能·科技·安全·无人机·能源
2501_941329726 小时前
YOLOv8-SEAMHead改进实战:书籍检测与识别系统优化方案
人工智能·yolo·目标跟踪
晓翔仔8 小时前
【深度实战】Agentic AI 安全攻防指南:基于 CSA 红队测试手册的 12 类风险完整解析
人工智能·安全·ai·ai安全
百家方案8 小时前
2026年数据治理整体解决方案 - 全1066页下载
大数据·人工智能·数据治理
北京耐用通信8 小时前
工业自动化中耐达讯自动化Profibus光纤链路模块连接RFID读写器的应用
人工智能·科技·物联网·自动化·信息与通信
Hgfdsaqwr9 小时前
Django全栈开发入门:构建一个博客系统
jvm·数据库·python