sklearn.tree.export_graphviz

cpp 复制代码
sklearn.tree.export_graphviz(decision_tree,              
                             out_file=None,              
                             *,
                             max_depth=None,             
                             feature_names=None,         
                             class_names=None,           
                             label='all',                
                             filled=False,               
                             leaves_parallel=False,      
                             impurity=True,              
                             node_ids=False,             
                             proportion=False,           
                             rotate=False,               
                             rounded=False,              
                             special_characters=False,   
                             precision=3,                
                             fontname='helvetica'        
)
  • decision_tree, 决策树分类器,要导出到 GraphViz的决策树
  • out_file=None, 要导出到 GraphViz 的决策树
  • *,
  • max_depth=None, 整数,默认=无。表示的最大深度。如果没有,则完全生成树。
  • feature_names=None, 每个函数的名称。如果 None 将使用通用名称("feature_0"、"feature_1"、...)。
  • class_names=None, 每个目标类别的名称按数字升序排列。仅与分类相关,不支持multi-output。如果 True ,则显示类名的符号表示。
  • label='all', {'all', 'root', 'none'},默认='全部';是否显示杂质标签等。选项包括'all' 显示在每个节点,'root' 仅显示在顶部根节点,或'none' 不显示在任何节点。
  • filled=False, 布尔,默认=假。当设置为 True 时,绘制节点以指示分类的多数类、回归值的极值或 multi-output 的节点纯度。
  • leaves_parallel=False, 布尔,默认=假。当设置为 True 时,在树的底部绘制所有叶节点。
  • impurity=True, 布尔,默认=真。当设置为 True 时,显示每个节点的杂质。
  • node_ids=False, 布尔,默认=假。当设置为 True 时,在每个节点上显示 ID 号。
  • proportion=False, 布尔,默认=假。当设置为 True 时,将 'values' 和/或 'samples' 的显示分别更改为比例和百分比。
  • rotate=False, 布尔,默认=假。当设置为 True 时,将树从左到右而不是自上而下。
  • rounded=False, 布尔,默认=假。当设置为 True 时,绘制圆角节点框。
  • special_characters=False, 布尔,默认=假。当设置为 False 时,忽略特殊字符以兼容 PostScript。
  • precision=3, 整数,默认=3。每个节点的杂质、阈值和值属性值中浮点精度的位数。
  • fontname='helvetica' str,默认='helvetica'。用于呈现文本的字体名称。
相关推荐
励志成为大佬的小杨12 分钟前
pytorch模型的进阶训练和性能优化
人工智能·pytorch·python
知舟不叙21 分钟前
OpenCV的基础操作
人工智能·opencv·计算机视觉
果冻人工智能39 分钟前
打造 AI Agent 对于中产阶级来说就是场噩梦
人工智能
MediaTea1 小时前
AI 文生图:提示词撰写技巧与示例(ChatGPT-4o 篇)
人工智能
墨绿色的摆渡人1 小时前
用 pytorch 从零开始创建大语言模型(三):编码注意力机制
人工智能·pytorch·语言模型
m0_490240671 小时前
软件自动化测试(1):python+selenium自动化测试环境搭建
开发语言·python·selenium
橘猫云计算机设计1 小时前
基于ssm的食物营养成分数据分析平台设计与实现(源码+lw+部署文档+讲解),源码可白嫖!
后端·python·信息可视化·数据挖掘·数据分析·django·毕业设计
zm-v-159304339861 小时前
ChatGPT 与 DeepSeek:学术科研的智能 “双引擎”
人工智能·chatgpt
果冻人工智能1 小时前
美国狂奔,中国稳走,AI赛道上的龟兔之争?
人工智能