科大讯飞分类算法挑战赛2023的一些经验总结

引言:

ResNet是he kaiming大佬的早年神作,当年直接刷榜各大图像分类任务。ResNet是一种残差网络,咱们可以把它理解为一个子网络,这个子网络经过堆叠可以构成一个很深的网络,而ResNext在其基础上,进行了一定修改完善,通过引入Cardinatity后,模型性能得到了大幅度提升。(下图是经典ResNet残差网络模块结构)


1. 通用增强网络性能的手段

一般增强一个CNN的表达能力有三种手段:

  • 一是增加网络层次即加深网络(目前CNN已经由最初Alexnet的不到十层增加到了成百上千层,而实际实验结果表明由层次提升而带来的边际准确率增加已是越来越少);

  • 二是增加网络模块宽度(可见我们之前有介绍过的Wide residual network,可宽度的增加必然会带来指数级的参数规模提升,因此它并非为主流CNN设计所认可。);

  • 三是改善CNN网络结构设计(当然在不增加模型复杂度的情况下通过改良模型设计以来提升模型性能是最理想的做法,不过其门槛则实在是太高,不然Google/Facebook/Microsoft的那些埋头设计网络/调参的哥们儿就没办法拿那么高工资了。)

2. ResNet和Resnext比较

ResNeXt的做法可归为上面三种方法的第三种。它引入了新的用于构建CNN网络的模块,而此模块又非像过去看到的Inception module那么复杂,它更是提出了一个cardinatity的概念,用于作为模型复杂度的另外一个度量。Cardinatity指的是一个block中所具有的相同分支的数目。

3. 上述网络在实际比赛的实测

根据科大讯飞几个计算机视觉任务的结果来说,那些EfficientNet、MobileNet这些网络结构对准确率的精度必然是有影响的,根据实测的几个比赛基本精度(准确率)损失在3%-5%左右。ResNext相比于其他ResNet等结构,确实在模型设计上,能够达到更准确的分类精度,至于比ResNext更复杂的经典网络IncepNetv4尚且未能测试,等后续有机会再做测试。每次测试结果为多次超参数测试后的最高值,具体实测的结果如下:

复制代码
               表1  在科大讯飞AIGC分类挑战赛2023上的实测结果
模型 准确率
MobileNetv2_s、MobileNetv2_m 95.32%
EfficientNetB1-B5 95.71%
ResNet34 98.15%
ResNext 98.53%
相关推荐
亚马逊云开发者8 分钟前
Q CLI 助力合合信息实现 Aurora 的升级运营
人工智能
超龄超能程序猿11 分钟前
YOLOv8 五大核心模型:从检测到分类的介绍
yolo·分类·数据挖掘
全栈胖叔叔-瓜州1 小时前
关于llamasharp 大模型多轮对话,模型对话无法终止,或者输出角色标识User:,或者System等角色标识问题。
前端·人工智能
坚果派·白晓明1 小时前
AI驱动的命令行工具集x-cmd鸿蒙化适配后通过DevBox安装使用
人工智能·华为·harmonyos
GISer_Jing2 小时前
前端营销技术实战:数据+AI实战指南
前端·javascript·人工智能
Dekesas96952 小时前
【深度学习】基于Faster R-CNN的黄瓜幼苗智能识别与定位系统,农业AI新突破
人工智能·深度学习·r语言
大佐不会说日语~2 小时前
Spring AI Alibaba 的 ChatClient 工具注册与 Function Calling 实践
人工智能·spring boot·python·spring·封装·spring ai
CeshirenTester2 小时前
Playwright元素定位详解:8种定位策略实战指南
人工智能·功能测试·程序人生·单元测试·自动化
世岩清上3 小时前
AI驱动的智能运维:从自动化到自主化的技术演进与架构革新
运维·人工智能·自动化
K2_BPM3 小时前
告别“单点智能”:AI Agent如何重构企业生产力与流程?
人工智能