Transformer架构

Transformer架构是一种重要的神经网络模型架构,最初由Vaswani等人在2017年提出,并在机器翻译任务上取得了显著的性能提升。Transformer架构在自然语言处理领域得到广泛应用,特别是在语言模型、机器翻译和文本生成等任务中。

Transformer架构的核心思想是使用自注意力机制(self-attention mechanism)来建立输入序列的表示。相比于传统的循环神经网络(RNN)架构,Transformer不需要按顺序逐步处理输入序列,而是可以并行地处理整个序列。

Transformer架构由两个主要组件组成:编码器(Encoder)和解码器(Decoder)。编码器负责将输入序列编码成一个表示,解码器则根据该表示生成输出序列。

编码器和解码器都由多个相同层级的模块堆叠而成。每个模块内部由两个子层组成:多头自注意力机制层(multi-head self-attention layer)和前馈神经网络层(feed-forward neural network layer)。

在自注意力机制中,输入序列中的每个位置都与其他位置进行交互,根据它们之间的相关性分配不同的权重。这有助于模型捕捉输入序列中的全局信息,并建立更好的表示。

前馈神经网络层则对每个位置的表示进行非线性变换和特征提取,进一步增强表示能力。

此外,Transformer还引入了位置编码(position encoding)来将序列中每个位置的信息与其相对位置关联起来。这允许模型辨识输入序列中的顺序信息。

在训练阶段,Transformer使用有监督学习的方式进行训练,通过最小化目标标签与模型生成序列之间的差异来调整模型参数。通常使用交叉熵损失函数进行优化。

Transformer架构的优势在于它可以处理较长的输入序列,并且由于并行化的设计,训练和推理速度较快。此外,自注意力机制使得模型能够捕捉输入序列中不同位置之间的依赖关系,增强了模型的表达和建模能力。

总而言之,Transformer架构是一种基于自注意力机制的神经网络模型架构,广泛用于自然语言处理任务。它的设计使得它在处理长文本序列时表现优秀,并取得了许多NLP任务的突破性进展。

相关推荐
Moshow郑锴5 小时前
机器学习的特征工程(特征构造、特征选择、特征转换和特征提取)详解
人工智能·机器学习
C++、Java和Python的菜鸟6 小时前
第六章 统计初步
算法·机器学习·概率论
Jina AI9 小时前
回归C++: 在GGUF上构建高效的向量模型
人工智能·算法·机器学习·数据挖掘·回归
什么都想学的阿超10 小时前
【大语言模型 02】多头注意力深度剖析:为什么需要多个头
人工智能·语言模型·自然语言处理
试剂界的爱马仕13 小时前
胶质母细胞瘤对化疗的敏感性由磷脂酰肌醇3-激酶β选择性调控
人工智能·科技·算法·机器学习·ai写作
AI波克布林14 小时前
发文暴论!线性注意力is all you need!
人工智能·深度学习·神经网络·机器学习·注意力机制·线性注意力
张子夜 iiii14 小时前
机器学习算法系列专栏:主成分分析(PCA)降维算法(初学者)
人工智能·python·算法·机器学习
Blossom.11814 小时前
把 AI 推理塞进「 8 位 MCU 」——0.5 KB RAM 跑通关键词唤醒的魔幻之旅
人工智能·笔记·单片机·嵌入式硬件·深度学习·机器学习·搜索引擎
MARS_AI_16 小时前
云蝠智能VoiceAgent:AI赋能售后服务场景的创新实践
人工智能·语言模型·自然语言处理·人机交互·信息与通信
2502_9271612816 小时前
DAY 40 训练和测试的规范写法
人工智能·深度学习·机器学习