Transformer架构

Transformer架构是一种重要的神经网络模型架构,最初由Vaswani等人在2017年提出,并在机器翻译任务上取得了显著的性能提升。Transformer架构在自然语言处理领域得到广泛应用,特别是在语言模型、机器翻译和文本生成等任务中。

Transformer架构的核心思想是使用自注意力机制(self-attention mechanism)来建立输入序列的表示。相比于传统的循环神经网络(RNN)架构,Transformer不需要按顺序逐步处理输入序列,而是可以并行地处理整个序列。

Transformer架构由两个主要组件组成:编码器(Encoder)和解码器(Decoder)。编码器负责将输入序列编码成一个表示,解码器则根据该表示生成输出序列。

编码器和解码器都由多个相同层级的模块堆叠而成。每个模块内部由两个子层组成:多头自注意力机制层(multi-head self-attention layer)和前馈神经网络层(feed-forward neural network layer)。

在自注意力机制中,输入序列中的每个位置都与其他位置进行交互,根据它们之间的相关性分配不同的权重。这有助于模型捕捉输入序列中的全局信息,并建立更好的表示。

前馈神经网络层则对每个位置的表示进行非线性变换和特征提取,进一步增强表示能力。

此外,Transformer还引入了位置编码(position encoding)来将序列中每个位置的信息与其相对位置关联起来。这允许模型辨识输入序列中的顺序信息。

在训练阶段,Transformer使用有监督学习的方式进行训练,通过最小化目标标签与模型生成序列之间的差异来调整模型参数。通常使用交叉熵损失函数进行优化。

Transformer架构的优势在于它可以处理较长的输入序列,并且由于并行化的设计,训练和推理速度较快。此外,自注意力机制使得模型能够捕捉输入序列中不同位置之间的依赖关系,增强了模型的表达和建模能力。

总而言之,Transformer架构是一种基于自注意力机制的神经网络模型架构,广泛用于自然语言处理任务。它的设计使得它在处理长文本序列时表现优秀,并取得了许多NLP任务的突破性进展。

相关推荐
薛定谔的猫198212 分钟前
四、基于LangChain与HuggingFace Pipeline的本地大语言模型对话系统搭建指南(使用阿里千问-模型)
人工智能·语言模型·langchain
zhengfei61123 分钟前
Clawdbot技能合集,精彩纷呈。(Clawdbot已正式更名为Moltbot)
人工智能·语言模型
TGITCIC25 分钟前
RAG不是魔法,是工程:从知识库到企业部署的硬核实践
人工智能·算法·机器学习·rag·ai agent·ai开发·rag增强检索
Clarice__43 分钟前
Anaconda安装、使用教程
windows·python·机器学习·conda·visual studio code
钮钴禄·爱因斯晨1 小时前
机器学习(三):聚焦KNN算法距离度量、特征预处理与超参数选择
人工智能·算法·机器学习
CDA数据分析师干货分享1 小时前
【CDA干货】客户分群建模——RFM+K-Means用户画像——电商用户数据分析全流程:从数据到增长决策
算法·机器学习·数据挖掘·数据分析·kmeans·cda证书
Cathy Bryant1 小时前
softmax函数与logits
笔记·神经网络·机器学习·概率论·信息与通信
HyperAI超神经1 小时前
在线教程丨微软开源3D生成模型TRELLIS.2,3秒生成高分辨率的全纹理资产
人工智能·深度学习·机器学习·3d
油泼辣子多加1 小时前
【信创】华为昇腾NLP算法训练
人工智能·算法·机器学习·华为·自然语言处理
杨_晨1 小时前
大模型微调训练FAQ - Batch Size与参数配置
人工智能·机器学习·ai·语言模型·batch