Jupyter Notebook 遇上 NebulaGraph,可视化探索图数据库

在之前的《手把手教你用 NebulaGraph AI 全家桶跑图算法》中,除了介绍了 ngai 这个小工具之外,还提到了一件事有了 Jupyter Notebook 插件: https://github.com/wey-gu/ipython-ngql,可以更便捷地操作 NebulaGraph。

本文就手把手教你咋在 Jupyter Notebook 中,愉快地玩图数据库。

只要你仔细读完本文,一条 %ngql MATCH p=(n:player)->() RETURN p 命令就可以直接查询出数据,再接上 %ng_draw 就可以画出返回结果。

下面,进入今天的主菜------Jupyter Notebook 扩展:ipython-ngql

其实,ipython-ngql 这个扩展断断续续地开发了两年,我一直没有开发完成。恰好之前有空,并完成了一直以来的心愿,把 ipython-ngql 重构并正式发布了。它除了完全适配 NebulaGrpah 3.x 所有查询之外,还支持了 Notebook 内的返回结果可视化。

在介绍 ipython-ngql 是什么之前,我先做个简单的 Jupyter Notebook 介绍,虽然大多数的 Python 开发都知道。

什么是 Jupyter Notebook

Jupyter Notebook / Jupyter Labs 项目最初起源自 IPython 这个项目,后者是一个命令行上的交互式 Python 解释环境。因为有很好的补全、高亮和丰富的扩展能力,IPython 很快就成为了 Python 的第一 IDLE 替代项目,并且后来衍生出来了可以在浏览器里做更多事情的笔记本模式。

Jupyter 的笔记本模式改变了数据科学和相关科研、工业领域里人们协作、开发、分享面向数据的工作方式。有了它,我们可以在一个笔记本中可复现、可分享地进行代码执行、科学计算、数据可视化等等操作,是数据科学家、科研工作者的非常喜欢的工具,而且它还早就引入了 Python 之外的很多其他语言作为执行内核支持。

因为在 Jupyter Notebook 中进行 NebulaGraph 的查询、计算、可视化一直是很多社区同学的心愿,在前阵子 NebulaGrpah AI Suite 的开发过程中,我并实现了 Jupyter 中方便进行 NetworkX / PySpark 的计算。既然有图计算了,索性我就把相关的查询、可视化功能一起做掉,并作为 Jupyter 的扩展一起发布出来给大家使用啦。

ipython-ngql 的安装

因为 ipython-ngql 本文就是一个基于 Jupyter Notebook 的扩展,所以它的安装非常简单。只需要在 Jupyter Notebook 中执行 %pip install ipython-ngql ,再加载它就好:

python 复制代码
%pip install ipython-ngql
%load_ext ngql

然后,我们就可以用 %ngql 这个 Jupyter Magic word 连接 NebulaGraph 了:

python 复制代码
%ngql --address 127.0.0.1 --port 9669 --user root --password nebula #填入 ip 地址和 graphd 的端口号

当成功连接服务之后,SHOW SPACES 的结果会返回在 notebook cell 下。

除了上面的扩展安装方法之外,你可以从 Docker 桌面版的扩展市场里搜索 NebulaGraph,一键安装本地开发环境。安装完毕之后,进入 NebulaGraph Docker 扩展内部,点击 NebulaGraph AI ,点击 Install NX Mode 安装本地的 NebulaGraph + Jupyter Notebook 开发环境。

数据查询

ipython-ngql 现在支持两种语法 %ngql 接单行查询和 %%ngql 接多行查询。

单行查询

例如:

shell 复制代码
%ngql USE basketballplayer;
%ngql MATCH (v:player{name:"Tim Duncan"})-->(v2:player) RETURN v2.player.name AS Name;

多行查询

例如:

shell 复制代码
%%ngql
ADD HOSTS "storaged3":9779,"storaged4":9779;
SHOW HOSTS;

渲染结果

在任意一个查询后面紧跟着一个 %ng_draw 指令,就可以把结果可视化渲染出来。像是这样:

python 复制代码
# one query
%ngql GET SUBGRAPH 2 STEPS FROM "player101" YIELD VERTICES AS nodes, EDGES AS relationships;
%ng_draw

# another query
%ngql match p=(:player)-[]->() return p LIMIT 5
%ng_draw

效果:

此外,你的渲染的结果还会被保存为单文件 html ,方便我们可以内嵌到任意网页中。

像是下面,其实就是一个内嵌的页面:

高阶用法

下面,我们来展示一些便捷的高阶用法。比如 %ngql help,可以获得更多帮助信息。

操作查询结果为 pandas DF

你的每次查询,返回的结果会被存到 _ 变量中,方便我们对它进行读取。像是这样:

返回原始 ResultSet

ipython-ngql 默认返回的结果格式是 pandas DF,如果我们想在 Jupyter Notebook 中交互地调试 Python 的 NebulaGraph 应用代码,可以将返回结果设置为原始的 ResultSet 格式,方便直观进行 query 与结果解析。例如:

python 复制代码
In [1] : %config IPythonNGQL.ngql_result_style="raw"

In [2] : %%ngql USE pokemon_club;
    ...: GO FROM "Tom" OVER owns_pokemon YIELD owns_pokemon._dst as pokemon_id
    ...: | GO FROM $-.pokemon_id OVER owns_pokemon REVERSELY YIELD owns_pokemon._dst AS Trainer_Name;
    ...:
    ...:
Out[3]:
ResultSet(ExecutionResponse(
    error_code=0,
    latency_in_us=3270,
    data=DataSet(
        column_names=[b'Trainer_Name'],
        rows=[Row(
            values=[Value(
                sVal=b'Tom')]),
...
        Row(
            values=[Value(
                sVal=b'Wey')])]),
    space_name=b'pokemon_club'))

In [4]: r = _

In [5]: r.column_values(key='Trainer_Name')[0].cast()
Out[5]: 'Tom'

查询模板

除了上面那些功能,我还支持了模板功能,语法沿用了 Jinja2{``{ variable }}。详见这个例子:

未来

后续,我打算增强可视化的自定义选项,也欢迎社区里的大伙来贡献新的 feature、idea。

项目的 repo 在 👉🏻https://github.com/wey-gu/ipython-ngql


谢谢你读完本文 (///▽///)

如果你想尝鲜图数据库 NebulaGraph,记得去 GitHub 下载、使用、(з)-☆ star 它 -> GitHub;和其他的 NebulaGraph 用户一起交流图数据库技术和应用技能,留下「你的名片」一起玩耍呀~

相关推荐
cookqq24 分钟前
mongodb源码分析session异步接受asyncSourceMessage()客户端流变Message对象
数据库·sql·mongodb·nosql
呼拉拉呼拉35 分钟前
Redis故障转移
数据库·redis·缓存·高可用架构
什么都想学的阿超38 分钟前
【Redis系列 04】Redis高可用架构实战:主从复制与哨兵模式从零到生产
数据库·redis·架构
pp-周子晗(努力赶上课程进度版)1 小时前
【MySQL】视图、用户管理、MySQL使用C\C++连接
数据库·mysql
斯特凡今天也很帅1 小时前
clickhouse常用语句汇总——持续更新中
数据库·sql·clickhouse
超级小忍2 小时前
如何配置 MySQL 允许远程连接
数据库·mysql·adb
吹牛不交税3 小时前
sqlsugar WhereIF条件的大于等于和等于查出来的坑
数据库·mysql
hshpy3 小时前
setting up Activiti BPMN Workflow Engine with Spring Boot
数据库·spring boot·后端
文牧之4 小时前
Oracle 审计参数:AUDIT_TRAIL 和 AUDIT_SYS_OPERATIONS
运维·数据库·oracle
篱笆院的狗4 小时前
如何使用 Redis 快速实现布隆过滤器?
数据库·redis·缓存