[原创]关于解决pytorch训练神经网络时显存一直增长的问题

@[原创]关于解决pytorch训练神经网络时显存一直增长的问题

问题描述

在训练自定义loss和自定义网络结构的一个模型的时候,发现模型和数据都比较简单的情况下,在训练过程中居然把24g的显卡拉爆了显存。

然后使用nvidia-smi -l观察显存变化,发现是有规律的显存一直增加,直到OOM。

问题解决思路

在这个过程中尝试询问了chatgpt,但是发现它提供的解决方案,诸如torch.cuda.memory_cached() /del data 等命令放在每次循环后面并不能解决问题。

所以后面尝试在谷歌进行搜索,找到了下面这篇的知乎的博客:

链接: link.

这篇文章的四种方法其实都没有解决我的问题,但是它的第一种情况给了我一点启发,此外chatgpt在最开始提到的原因也是关键,促成了后面问题的解决。

在直接尝试各种解决手段无果后,我决定自行去查看代码段和显存的使用情况,主要是使用下面这个命令:

python 复制代码
print("Memory Allocated:", torch.cuda.memory_allocated() / (1024 ** 2), "MB")

这个相当于代码内部的nvidia-smi可以查看代码运行到这里的时候显存的占用量(这里说的并不严谨,因为还有memory_cached这个命令查看缓存的显存,但是先这么肤浅的使用吧。)

随后我发现了显存的一直增长来自于下面这个语句:

python 复制代码
self._update_stats({'Loss/total': loss_iter.item(), 'PSNR/initial': psnr_initial}, batch_size, loader)

回想起之前的那篇知乎博客的第一点解决方案,我把psnr_initial改为了psnr_initial.item(),随后发现占用的内存不会再随着循环的迭代而增长了。

分析

总结来说在_update_stats()这个函数中,它会使用psnr_initial这个tensor,所以如果不适用item()做隔离的话,相当于gpu上有数据一直在被其他函数调用,所以主循环里每一次迭代都无法释放上一次的显存,但是用了item()就可以跟gpu上的数据隔离开,帮助主循环迭代过程的显存正常释放。

所以在遇到同样的问题的时候,朋友们可以主要检查一下每次迭代结束是否有gpu上的数据仍然在被其他的函数调用,比如loss的记录函数。

相关推荐
说私域2 分钟前
社群时代下的商业变革:“开源AI智能名片链动2+1模式S2B2C商城小程序”的应用与影响
人工智能·小程序·开源
格林威37 分钟前
AOI在风电行业制造领域中的应用
人工智能·数码相机·计算机视觉·视觉检测·制造·机器视觉·aoi
大千AI助手37 分钟前
Graph-R1:智能图谱检索增强的结构化多轮推理框架
人工智能·神经网络·大模型·rag·检索增强生成·大千ai助手·graph-r1
瑞禧生物ruixibio1 小时前
ABA-Biotin,脱落酸-生物素,用于追踪ABA在植物细胞中的分布及运输路径
人工智能
哔哩哔哩技术1 小时前
B站基础安全在AI溯源方向的探索实践
人工智能
IT_陈寒1 小时前
7个鲜为人知的JavaScript性能优化技巧,让你的网页加载速度提升50%
前端·人工智能·后端
城数派1 小时前
1951-2100年全球复合极端气候事件数据集
人工智能·数据分析
Hody912 小时前
【XR硬件系列】夸克 AI 眼镜预售背后:阿里用 “硬件尖刀 + 生态护城河“ 重构智能穿戴逻辑
人工智能·重构
Icoolkj2 小时前
RAGFlow与Dify知识库:对比选型与技术落地解析
人工智能
终端域名2 小时前
转折·融合·重构——2025十大新兴技术驱动系统变革与全球挑战应对
人工智能·重构