bagging集成与boosting集成的区别是什么?

bagging集成与boosting集成的区别

区别一:数据方面

Bagging:对数据进行采样训练;

Boosting:根据前一轮学习结果调整数据的重要性。

区别二:投票方面

Bagging:所有学习器平权投票;

Boosting:对学习器进行加权投票。

区别三:学习顺序

Bagging的学习是并行的,每个学习器没有依赖关系;

Boosting学习是串行,学习有先后顺序。

区别四:主要作用

Bagging主要用于提高泛化性能(解决过拟合,也可以说降低方差)

Boosting主要用于提高训练精度 (解决欠拟合,也可以说降低偏差)

相关推荐
硅谷秋水8 分钟前
REALM:用于机器人操作泛化能力的真实-仿真验证基准测试
人工智能·机器学习·计算机视觉·语言模型·机器人
啊阿狸不会拉杆17 分钟前
《机器学习导论》第 9 章-决策树
人工智能·python·算法·决策树·机器学习·数据挖掘·剪枝
曦月逸霜22 分钟前
机器学习——个人笔记(持续更新中~)
人工智能·机器学习
整得咔咔响31 分钟前
贝尔曼最优公式(BOE)
人工智能·算法·机器学习
玄同76535 分钟前
Python 自动发送邮件实战:用 QQ/163 邮箱发送大模型生成的内容
开发语言·人工智能·python·深度学习·机器学习·邮件·邮箱
玄同76542 分钟前
机器学习中的三大距离度量:欧式距离、曼哈顿距离、切比雪夫距离详解
人工智能·深度学习·神经网络·目标检测·机器学习·自然语言处理·数据挖掘
rainbow72424444 分钟前
AI证书选型深度分析:如何根据职业目标评估其真正价值
人工智能·机器学习
倔强的石头1061 小时前
归纳偏好 —— 机器学习的 “择偶标准”
人工智能·机器学习
龙山云仓1 小时前
MES系统超融合架构
大数据·数据库·人工智能·sql·机器学习·架构·全文检索
Tadas-Gao1 小时前
深度学习与机器学习的知识路径:从必要基石到独立范式
人工智能·深度学习·机器学习·架构·大模型·llm