TransnormerLLM 中 FlashLinearAttention 的纯pytorch实现

Github 仓库:https://github.com/One-sixth/flash-linear-attention-pytorch

flash-linear-attention-pytorch

纯 Pytorch 实现 TransnormerLLM 中快速线性注意力算子。

用于学习目的。

如果你希望用于训练模型,你可能要修改为 CUDA 或 Triton 的实现,不然会很慢。

注意

这个算子有精度问题,误差较大,是正常的。

这是因为注意力矩阵没有激活函数,导致注意力矩阵的值很大。

在使用 float16 类型时需要特别小心。

这是一个简单的缓解方法:限制 q 和 k 的值,从而减少float16溢出的可能性。

python 复制代码
q = q / q.norm(-1, keepdim=True)
k = k / k.norm(-1, keepdim=True)
o = linear_attention(q, k, v, m)

使用方法

python 复制代码
import torch
from flash_linear_attention_ops import flash_linear_attention, normal_linear_attention


batch_size = 16
seq_len = 1024
dim = 64
n_head = 12
device = 'cuda'
dtype = torch.float32


Q = torch.randn(batch_size, n_head, seq_len, dim, requires_grad=True, dtype=dtype, device=device)
K = torch.randn(batch_size, n_head, seq_len, dim, requires_grad=True, dtype=dtype, device=device)
V = torch.randn(batch_size, n_head, seq_len, dim, requires_grad=True, dtype=dtype, device=device)
M = torch.randint(0, 2, (1, 1, seq_len, seq_len), device=device, dtype=dtype)

O_flash = flash_linear_attention(Q, K, V, M)
O_normal = normal_linear_attention(Q, K, V, M)

print('O_flash.shape', O_flash.shape)
print('O_normal.shape', O_normal.shape)

print('O diff', (O_flash - O_normal).abs().max().item())

参考引用

https://github.com/OpenNLPLab/TransnormerLLM

https://github.com/shreyansh26/FlashAttention-PyTorch

相关推荐
EterNity_TiMe_15 分钟前
【人工智能】蓝耘智算平台盛大发布DeepSeek满血版:开创AI推理体验新纪元
人工智能·python·机器学习·deepseek
顾德拉科40 分钟前
使用pyinstaller对gradio和chromadb进行打包
python
java1234_小锋1 小时前
一周学会Flask3 Python Web开发-redirect重定向
前端·python·flask·flask3
重生之我要成为代码大佬1 小时前
Python天梯赛10分题-念数字、求整数段和、比较大小、计算阶乘和
开发语言·数据结构·python·算法
Daitu_Adam1 小时前
Windows11安装GPU版本Pytorch2.6教程
人工智能·pytorch·python·深度学习
阿正的梦工坊1 小时前
Grouped-Query Attention(GQA)详解: Pytorch实现
人工智能·pytorch·python
码界筑梦坊2 小时前
基于Flask的短视频流量数据可视化系统的设计与实现
大数据·python·信息可视化·flask·毕业设计
eso19832 小时前
Spark MLlib使用流程简介
python·算法·spark-ml·推荐算法
dme.3 小时前
Python爬虫基础文件操作
爬虫·python
next_travel3 小时前
图像分割UNet、生成模型SD及IP-Adapter
pytorch·深度学习·计算机视觉