TransnormerLLM 中 FlashLinearAttention 的纯pytorch实现

Github 仓库:https://github.com/One-sixth/flash-linear-attention-pytorch

flash-linear-attention-pytorch

纯 Pytorch 实现 TransnormerLLM 中快速线性注意力算子。

用于学习目的。

如果你希望用于训练模型,你可能要修改为 CUDA 或 Triton 的实现,不然会很慢。

注意

这个算子有精度问题,误差较大,是正常的。

这是因为注意力矩阵没有激活函数,导致注意力矩阵的值很大。

在使用 float16 类型时需要特别小心。

这是一个简单的缓解方法:限制 q 和 k 的值,从而减少float16溢出的可能性。

python 复制代码
q = q / q.norm(-1, keepdim=True)
k = k / k.norm(-1, keepdim=True)
o = linear_attention(q, k, v, m)

使用方法

python 复制代码
import torch
from flash_linear_attention_ops import flash_linear_attention, normal_linear_attention


batch_size = 16
seq_len = 1024
dim = 64
n_head = 12
device = 'cuda'
dtype = torch.float32


Q = torch.randn(batch_size, n_head, seq_len, dim, requires_grad=True, dtype=dtype, device=device)
K = torch.randn(batch_size, n_head, seq_len, dim, requires_grad=True, dtype=dtype, device=device)
V = torch.randn(batch_size, n_head, seq_len, dim, requires_grad=True, dtype=dtype, device=device)
M = torch.randint(0, 2, (1, 1, seq_len, seq_len), device=device, dtype=dtype)

O_flash = flash_linear_attention(Q, K, V, M)
O_normal = normal_linear_attention(Q, K, V, M)

print('O_flash.shape', O_flash.shape)
print('O_normal.shape', O_normal.shape)

print('O diff', (O_flash - O_normal).abs().max().item())

参考引用

https://github.com/OpenNLPLab/TransnormerLLM

https://github.com/shreyansh26/FlashAttention-PyTorch

相关推荐
杰瑞哥哥3 分钟前
快速搭建Web前端(streamlit使用指南)
python·信息可视化·web·模型部署
Hcoco_me4 分钟前
大模型面试题39:KV Cache 完全指南
人工智能·深度学习·自然语言处理·transformer·word2vec
小途软件5 分钟前
基于计算机视觉的课堂行为编码研究
人工智能·python·深度学习·计算机视觉·语言模型·自然语言处理·django
盼小辉丶5 分钟前
PyTorch实战——pix2pix详解与实现
pytorch·深度学习·生成模型
智航GIS5 分钟前
9.2 多进程入门
数据库·python
小途软件6 分钟前
基于计算机视觉的桥梁索力测试方法
人工智能·python·语言模型·自然语言处理·django
yousuotu13 分钟前
基于Python实现水果新鲜度分类
开发语言·python·分类
Data_agent14 分钟前
微店商品列表API接口指南
大数据·数据库·python
吴老弟i16 分钟前
基于 VSCode 实现 Python 开发与调试 | 环境配置搭建 | PIP Anaconda
vscode·python·pip
七夜zippoe18 分钟前
异步编程实战:构建高性能Python网络应用
开发语言·python·websocket·asyncio·aiohttp