TransnormerLLM 中 FlashLinearAttention 的纯pytorch实现

Github 仓库:https://github.com/One-sixth/flash-linear-attention-pytorch

flash-linear-attention-pytorch

纯 Pytorch 实现 TransnormerLLM 中快速线性注意力算子。

用于学习目的。

如果你希望用于训练模型,你可能要修改为 CUDA 或 Triton 的实现,不然会很慢。

注意

这个算子有精度问题,误差较大,是正常的。

这是因为注意力矩阵没有激活函数,导致注意力矩阵的值很大。

在使用 float16 类型时需要特别小心。

这是一个简单的缓解方法:限制 q 和 k 的值,从而减少float16溢出的可能性。

python 复制代码
q = q / q.norm(-1, keepdim=True)
k = k / k.norm(-1, keepdim=True)
o = linear_attention(q, k, v, m)

使用方法

python 复制代码
import torch
from flash_linear_attention_ops import flash_linear_attention, normal_linear_attention


batch_size = 16
seq_len = 1024
dim = 64
n_head = 12
device = 'cuda'
dtype = torch.float32


Q = torch.randn(batch_size, n_head, seq_len, dim, requires_grad=True, dtype=dtype, device=device)
K = torch.randn(batch_size, n_head, seq_len, dim, requires_grad=True, dtype=dtype, device=device)
V = torch.randn(batch_size, n_head, seq_len, dim, requires_grad=True, dtype=dtype, device=device)
M = torch.randint(0, 2, (1, 1, seq_len, seq_len), device=device, dtype=dtype)

O_flash = flash_linear_attention(Q, K, V, M)
O_normal = normal_linear_attention(Q, K, V, M)

print('O_flash.shape', O_flash.shape)
print('O_normal.shape', O_normal.shape)

print('O diff', (O_flash - O_normal).abs().max().item())

参考引用

https://github.com/OpenNLPLab/TransnormerLLM

https://github.com/shreyansh26/FlashAttention-PyTorch

相关推荐
Q_Q196328847511 小时前
python+django/flask基于深度学习的个性化携程美食数据推荐系统
spring boot·python·深度学习·django·flask·node.js·php
胡耀超11 小时前
通往AGI的模块化路径:一个可能的技术架构(同时解答微调与RAG之争)
人工智能·python·ai·架构·大模型·微调·agi
清空mega11 小时前
从零开始搭建 flask 博客实验(常见疑问)
后端·python·flask
xier_ran12 小时前
关键词解释:DAG 系统(Directed Acyclic Graph,有向无环图)
python·算法
顾安r12 小时前
11.7 脚本网站 中国象棋
python·bash
WenGyyyL12 小时前
微信小程序开发——第二章:微信小程序开发环境搭建
开发语言·python·微信小程序
循环过三天12 小时前
3.2、Python-元组
开发语言·python
盼小辉丶12 小时前
Transformer实战(24)——通过数据增强提升Transformer模型性能
人工智能·深度学习·自然语言处理·transformer
Q_Q51100828512 小时前
python+django/flask的篮球馆/足球场地/运动场地预约系统
spring boot·python·django·flask·node.js·php
云雾J视界13 小时前
AI驱动半导体良率提升:基于机器学习的晶圆缺陷分类系统搭建
人工智能·python·机器学习·智能制造·数据驱动·晶圆缺陷分类