TransnormerLLM 中 FlashLinearAttention 的纯pytorch实现

Github 仓库:https://github.com/One-sixth/flash-linear-attention-pytorch

flash-linear-attention-pytorch

纯 Pytorch 实现 TransnormerLLM 中快速线性注意力算子。

用于学习目的。

如果你希望用于训练模型,你可能要修改为 CUDA 或 Triton 的实现,不然会很慢。

注意

这个算子有精度问题,误差较大,是正常的。

这是因为注意力矩阵没有激活函数,导致注意力矩阵的值很大。

在使用 float16 类型时需要特别小心。

这是一个简单的缓解方法:限制 q 和 k 的值,从而减少float16溢出的可能性。

python 复制代码
q = q / q.norm(-1, keepdim=True)
k = k / k.norm(-1, keepdim=True)
o = linear_attention(q, k, v, m)

使用方法

python 复制代码
import torch
from flash_linear_attention_ops import flash_linear_attention, normal_linear_attention


batch_size = 16
seq_len = 1024
dim = 64
n_head = 12
device = 'cuda'
dtype = torch.float32


Q = torch.randn(batch_size, n_head, seq_len, dim, requires_grad=True, dtype=dtype, device=device)
K = torch.randn(batch_size, n_head, seq_len, dim, requires_grad=True, dtype=dtype, device=device)
V = torch.randn(batch_size, n_head, seq_len, dim, requires_grad=True, dtype=dtype, device=device)
M = torch.randint(0, 2, (1, 1, seq_len, seq_len), device=device, dtype=dtype)

O_flash = flash_linear_attention(Q, K, V, M)
O_normal = normal_linear_attention(Q, K, V, M)

print('O_flash.shape', O_flash.shape)
print('O_normal.shape', O_normal.shape)

print('O diff', (O_flash - O_normal).abs().max().item())

参考引用

https://github.com/OpenNLPLab/TransnormerLLM

https://github.com/shreyansh26/FlashAttention-PyTorch

相关推荐
安冬的码畜日常20 分钟前
【玩转 Postman 接口测试与开发2_020】(完结篇)DIY 实战:随书示例 API 项目本地部署保姆级搭建教程(含完整调试过程)
python·测试工具·django·接口测试·postman·fastapi·api项目
winfredzhang20 分钟前
wxPython实战:打造一个优雅的图片预览工具
chrome·python·预览·剪切板
superman超哥23 分钟前
仓颉GC调优参数深度解析
c语言·开发语言·c++·python·仓颉
Byron Loong28 分钟前
【机器视觉】人物安全距离监测
python·yolo·计算机视觉
Swizard35 分钟前
告别“裸奔”代码:用 Pydantic 让你的 Python 数据固若金汤
python
老歌老听老掉牙1 小时前
砂轮轮廓的数学建模与可视化分析
python·数学建模·sympy·砂轮
xoliu11 小时前
Pytorch核心基础入门
人工智能·pytorch·python
一瞬祈望1 小时前
ResNet50 图像分类完整实战(Notebook Demo + 训练代码)
人工智能·python·神经网络·数据挖掘
其美杰布-富贵-李1 小时前
PyTorch Lightning Callback 指南
人工智能·pytorch·python·回调函数·callback