【论文阅读】基于深度学习的时序预测——Informer

系列文章链接
论文一:2020 Informer:长时序数据预测
论文二:2021 Autoformer:长序列数据预测
论文三:2022 FEDformer:长序列数据预测

文章地址:https://arxiv.org/abs/2012.07436

github地址:https://github.com/zhouhaoyi/Informer2020

参考解读:论文阅读 | AAAI21最佳论文:Informer

视频解读参考:Informer原理及代码解析

这篇文章是北航提出的一篇预测论文,在实际预测过程中,大多数需要基于长期的数据,否则根据短期数据预测出来的结果是不置信的,近年来的研究表明,transformer在时序序列预测上的潜力。但是单纯使用transformer存在二次时间复杂度、高内存使用量和编码器-解码器体系结构固有的局限性,基于这个背景作者提出了一个新模型Informer,具体创新点如下:

  1. ProbSparse self-attention:传统的self-attention会将每个点位和其他点位一起做权重分布计算,但在实际预测过程中,真正对当前点位预测造成影响的只有小部分,因此提出了一种概率稀疏注意力机制,把关注点关注在对当前值影响较大的点位上,以消除长尾数据的影响,权重计算复杂度从 O ( L 2 ) O(L^2) O(L2)降低至 O ( l ∗ l o g L ) O(l*logL) O(l∗logL),具体计算步骤如下:
    (1) 为每个 q u e r y query query都随机采样部分 k e y key key,默认为 5 ∗ l n L 5*lnL 5∗lnL;
    (2) 计算每个 q u e r y query query稀疏性得分, M ( q i ∗ k ) M(q_i*k) M(qi∗k);
    (3) 选择得分最高的 N N N个 q u e r y query query, N N N默认值为 5 ∗ l n L 5*lnL 5∗lnL;
    (4) 只计算topN的 q u e r y query query和 k e y key key的点积结果,从而得到attention的结果;
    (5) 剩下的 L − N L-N L−N个 q u e r y query query就采用均值 m e a n ( V ) mean(V) mean(V)作为输出,来保证大小的一致性;
    该部分值用在了self-attention部分,没有用在cross-attention部分;

    作者表明,对于其他的self-attention机制而言,当前机制相当于对于每个head进行基于采样的稀疏表示,相当于针对每个head的优化策略就存在差异,这种处理比常规的相同的处理更具优势;
  2. 一步Decoder:正常情况下,多点预测会基于上一个点的预测结果去预测下一个点位,但是当前模型可以一次性输出多个点位的预测结果;在预测时会将历史数据作为Decoder的输入的一部分,包括数据的位置信息和时间点信息,将向量输入全连接层得到预测结果,placeholder位置就会有对应的输出值,计算损失的时候只计算预测部分的位置对应损失;

    在Decoder中是双层的结构。在第一层掩码稀疏自注意力模块中,采用了掩码机制避免预测数据的时候关注到未来点位的信息,在对当前点位进行预测时,未来点位的数据设置为 − ∞ -\infty −∞,这样计算注意力的时候就不会关注到未来点位的信息,避免了自回归;第二层为一个多头交叉注意力模块,用于输出最终同维度的向量,进行目标序列和源序列的交互(512->2048->512);
相关推荐
一人の梅雨几秒前
阿里巴巴商品详情接口实战:B2B供应链视角下的高可用集成与数据价值挖掘
大数据·数据库·人工智能
乐迪信息1 分钟前
乐迪信息:AI视频分析技术用于船舶倾斜监控
大数据·网络·人工智能·算法·无人机
知乎的哥廷根数学学派1 分钟前
基于物理约束指数退化与Hertz接触理论的滚动轴承智能退化趋势分析(Pytorch)
开发语言·人工智能·pytorch·python·深度学习·算法·机器学习
Ethan Hunt丶2 分钟前
基于Pytorch预训练模型实现声纹识别系统
人工智能·pytorch·python·语音识别
ytttr8734 分钟前
基于隐马尔可夫模型(HMM)的语音识别实现
人工智能·语音识别
十三画者6 分钟前
【文献分享】LyMOI一种结合深度学习和大规模语言模型的用于解读组学数据的工作流程
人工智能·深度学习·语言模型·数据挖掘·数据分析
Zilliz Planet6 分钟前
官宣,Milvus开源语义高亮模型:告别饱和检索,帮RAG、agent剪枝80%上下文
人工智能·算法·机器学习·剪枝·milvus
张小凡vip6 分钟前
数据挖掘(二) ----- Jupyter Notebook使用示例和常见问题
人工智能·jupyter·数据挖掘
咕噜咕噜万7 分钟前
版本管理与产品迭代:规划、执行、工具与复盘全流程
大数据·人工智能
风哥在风中8 分钟前
当人类站在人工智能的十字路口
人工智能·智人·智人2.0·人工智能方向