【论文阅读】基于深度学习的时序预测——Informer

系列文章链接
论文一:2020 Informer:长时序数据预测
论文二:2021 Autoformer:长序列数据预测
论文三:2022 FEDformer:长序列数据预测

文章地址:https://arxiv.org/abs/2012.07436

github地址:https://github.com/zhouhaoyi/Informer2020

参考解读:论文阅读 | AAAI21最佳论文:Informer

视频解读参考:Informer原理及代码解析

这篇文章是北航提出的一篇预测论文,在实际预测过程中,大多数需要基于长期的数据,否则根据短期数据预测出来的结果是不置信的,近年来的研究表明,transformer在时序序列预测上的潜力。但是单纯使用transformer存在二次时间复杂度、高内存使用量和编码器-解码器体系结构固有的局限性,基于这个背景作者提出了一个新模型Informer,具体创新点如下:

  1. ProbSparse self-attention:传统的self-attention会将每个点位和其他点位一起做权重分布计算,但在实际预测过程中,真正对当前点位预测造成影响的只有小部分,因此提出了一种概率稀疏注意力机制,把关注点关注在对当前值影响较大的点位上,以消除长尾数据的影响,权重计算复杂度从 O ( L 2 ) O(L^2) O(L2)降低至 O ( l ∗ l o g L ) O(l*logL) O(l∗logL),具体计算步骤如下:
    (1) 为每个 q u e r y query query都随机采样部分 k e y key key,默认为 5 ∗ l n L 5*lnL 5∗lnL;
    (2) 计算每个 q u e r y query query稀疏性得分, M ( q i ∗ k ) M(q_i*k) M(qi∗k);
    (3) 选择得分最高的 N N N个 q u e r y query query, N N N默认值为 5 ∗ l n L 5*lnL 5∗lnL;
    (4) 只计算topN的 q u e r y query query和 k e y key key的点积结果,从而得到attention的结果;
    (5) 剩下的 L − N L-N L−N个 q u e r y query query就采用均值 m e a n ( V ) mean(V) mean(V)作为输出,来保证大小的一致性;
    该部分值用在了self-attention部分,没有用在cross-attention部分;

    作者表明,对于其他的self-attention机制而言,当前机制相当于对于每个head进行基于采样的稀疏表示,相当于针对每个head的优化策略就存在差异,这种处理比常规的相同的处理更具优势;
  2. 一步Decoder:正常情况下,多点预测会基于上一个点的预测结果去预测下一个点位,但是当前模型可以一次性输出多个点位的预测结果;在预测时会将历史数据作为Decoder的输入的一部分,包括数据的位置信息和时间点信息,将向量输入全连接层得到预测结果,placeholder位置就会有对应的输出值,计算损失的时候只计算预测部分的位置对应损失;

    在Decoder中是双层的结构。在第一层掩码稀疏自注意力模块中,采用了掩码机制避免预测数据的时候关注到未来点位的信息,在对当前点位进行预测时,未来点位的数据设置为 − ∞ -\infty −∞,这样计算注意力的时候就不会关注到未来点位的信息,避免了自回归;第二层为一个多头交叉注意力模块,用于输出最终同维度的向量,进行目标序列和源序列的交互(512->2048->512);
相关推荐
IT古董11 分钟前
【漫话机器学习系列】261.工具变量(Instrumental Variables)
人工智能·机器学习
小王格子15 分钟前
AI 编程革命:腾讯云 CodeBuddy 如何重塑开发效率?
人工智能·云计算·腾讯云·codebuddy·craft
MonkeyKing_sunyuhua27 分钟前
VSCode + Cline AI辅助编程完全指南
ide·人工智能·vscode
Leinwin33 分钟前
Microsoft Azure 服务4月更新告示
人工智能·azure
胡耀超37 分钟前
霍夫圆变换全面解析(OpenCV)
人工智能·python·opencv·算法·计算机视觉·数据挖掘·数据安全
jndingxin1 小时前
OpenCV CUDA 模块中用于在 GPU 上计算两个数组对应元素差值的绝对值函数absdiff(
人工智能·opencv·计算机视觉
jerry6091 小时前
LLM笔记(五)概率论
人工智能·笔记·学习·概率论
硅谷秋水1 小时前
学习以任务为中心的潜动作,随地采取行动
人工智能·深度学习·计算机视觉·语言模型·机器人
Tiny番茄1 小时前
Multimodal models —— CLIP,LLava,QWen
人工智能