Flink源码之TaskManager启动流程

从启动命令flink-daemon.sh可以看出TaskManger入口类为org.apache.flink.runtime.taskexecutor.TaskManagerRunner

复制代码
TaskManagerRunner::main
TaskManagerRunner::runTaskManagerProcessSecurely
TaskManagerRunner::runTaskManager //构造TaskManagerRunner并调用start()方法
TaskManagerRunner::new //核心

在TaskManagerRunner构造函数中,可以看出与JobManger类似,也是先构造出一些公共服务:

复制代码
highAvailabilityServices//用于获取JobManger的地址
rpcService //将TaskExecutor包装为AkkaActor提供RPC服务
heartbeatServices //心跳服务,与JobManger通信
metricRegistry //metric服务,提供metric注册和查询
blobCacheService //缓存Blob

这些服务在构造TaskExecutor时作为构造函数参数传入

构造TaskExecutor前会先构造TaskManagerServices辅助TaskExecutor实现其核心功能

复制代码
TaskManagerRunner::createTaskExecutorService
TaskManagerRunner::startTaskManager // 构造MetricGroup和相关服务
TaskManagerServices.fromConfiguration//读取TaskManger的配置信息启动TaskManager相关服务
TaskExecutor::new  //核心

启动TaskEexector后会与ResouceManager建立连接,将自身信息注册到RM后发送Slot报告给RM,具体调用链路如下:

复制代码
TaskManagerRunner::start
TaskExecutorToServiceAdapter::start
TaskExecutor::start
TaskExecutor::onStart
TaskExecutor::startTaskExecutorServices //获取ResourceManager地址后与ResourceManager建立连接,发送Slot报告
ResourceManagerLeaderListener::notifyLeaderAddress
TaskExecutor::notifyOfNewResourceManagerLeader
TaskExecutor::reconnectToResourceManager
TaskExecutor::tryConnectToResourceManager
TaskExecutor::connectToResourceManager
TaskExecutorToResourceManagerConnection::start
RegisteredRpcConnection::start
RegisteredRpcConnection::createNewRegistration
TaskExecutorToResourceManagerConnection::generateRegistration
RetryingRegistration::startRegistration //与resourcemanager建立连接
RetryingRegistration::register
ResourceManagerRegistration::invokeRegistration //向ResourceManager注册TaskExecutorRegistration信息
ResourceManagerGateway.registerTaskExecutor
TaskExecutorToResourceManagerConnection::onRegistrationSuccess
ResourceManagerRegistrationListener::onRegistrationSuccess
TaskExecutor::establishResourceManagerConnection 
    ResourceManagerGateway.sendSlotReport //发送自身slot信息给ResourceManager
    HeartbeatManagerImpl::monitorTarget//与RM建立心跳连接,当接到来自RM的心跳请求时,就会将SlotReport发送给RM作为心跳回应

TaskExecutor提供了以下两个核心方法:

复制代码
 //RM将Slot分配给JobMaster请求TM将具体Slot信息发送给JobMaster
  CompletableFuture<Acknowledge> requestSlot(
        SlotID slotId,
        JobID jobId,
        AllocationID allocationId,
        ResourceProfile resourceProfile,
        String targetAddress,
        ResourceManagerId resourceManagerId,
        @RpcTimeout Time timeout);
 
 //执行JobMaster提交的物理Task       
CompletableFuture<Acknowledge> submitTask(
        TaskDeploymentDescriptor tdd, JobMasterId jobMasterId, @RpcTimeout Time timeout);    

TaskManager中管理Slot的实现类TaskSlotTableImpl,该实例记录了Slot的分配信息。

HeartBeat

在TaskExecutor构造函数中有两个HeartbeatManager,实现类都是HeartbeatManagerImpl,此类是接受心跳请求,发送心跳响应:

复制代码
ResourceManagerHeartbeatManager //响应RM的心跳请求,心跳响应中带上SlotReport
JobManagerHeartbeatManager  //响应JobMaster的心跳请求, 心跳响应中带上AccumulatorReport

调用HeartbeatManagerImpl.monitorTarget(ResourceID resourceID, HeartbeatTarget heartbeatTarget) 与目标对象建立心跳连接。

HeartbeatManager还有个实现类是HeartbeatManagerSenderImpl,用于主动向监控目标发送心跳请求,比如在ResourceManager中创建的就是HeartbeatManagerSenderImpl,TaskManager启动时向ResourceManager注册后,RM就会调用HeartbeatManagerSenderImpl.monitor监控TM, 并定时向TM的HeartbeatManagerImpl发送心跳请求。同样,在JobMaster中创建的也是HeartbeatManagerSenderImpl,JobMaster定时向执行当前Job的TM发送心跳请求,TM响应与该Job相关信息。

综上,TM启动后向RM注册,与TM通过心跳信息同步Slot分配状况,接受RM的Slot分配请求向JobMaster提供Slot后,就可以接受JobMaster 执行具体的物理Task了。

相关推荐
阿里云大数据AI技术15 小时前
StarRocks 助力数禾科技构建实时数仓:从数据孤岛到智能决策
大数据
Lx35220 小时前
Hadoop数据处理优化:减少Shuffle阶段的性能损耗
大数据·hadoop
武子康1 天前
大数据-99 Spark Streaming 数据源全面总结:原理、应用 文件流、Socket、RDD队列流
大数据·后端·spark
阿里云大数据AI技术2 天前
大数据公有云市场第一,阿里云占比47%!
大数据
Lx3522 天前
Hadoop容错机制深度解析:保障作业稳定运行
大数据·hadoop
T06205142 天前
工具变量-5G试点城市DID数据(2014-2025年
大数据
向往鹰的翱翔2 天前
BKY莱德因:5大黑科技逆转时光
大数据·人工智能·科技·生活·健康医疗
鸿乃江边鸟2 天前
向量化和列式存储
大数据·sql·向量化
IT毕设梦工厂2 天前
大数据毕业设计选题推荐-基于大数据的客户购物订单数据分析与可视化系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·数据分析·spark·毕业设计·源码·bigdata
java水泥工2 天前
基于Echarts+HTML5可视化数据大屏展示-白茶大数据溯源平台V2
大数据·echarts·html5