Android性能优化—数据结构优化

优化数据结构是提高Android应用性能的重要一环。在Android开发中,ArrayList、LinkedList和HashMap等常用的数据结构的正确使用对APP性能的提升有着重大的影响。

一、ArrayList

ArrayList内部使用的是数组,默认大小10,当数组长度不足时,会进行扩容,扩容后的长度为原来的1.5倍。扩容实际上是新建一个长度为原数组1.5的新数组,然后遍历原数组,将数据一一赋值给新数组。

add(position,object) 给指定位置添加元素时,会将该元素及其下标后面的元素都往后移动一位,

最后将add的元素添加到position位置。

delete(position) 删除指定位置元素,删除该元素,并将该元素下标后面的元素都往前移动一位。

由于添加和删除指定位置的元素,其后面的元素需要移动,造成耗时,速度慢,在尾部添加和删除不需要移动,不受影响。

优缺点:

读取速度快,尾部添加和删除速度快,中途添加和删除速度慢。

使用场景:

1)ArrayList提供了常数时间复杂度的随机访问操作(get和set方法),因为它内部使用数组来存储元素,可以通过索引直接访问元素。

2)ArrayList对于在末尾添加或删除元素的操作具有较好的性能,时间复杂度为O(1)。当需要在集合的尾部频繁添加和删除元素时,可以使用ArrayList。

3)ArrayList对于在中间位置插入或删除元素的操作性能较差,因为需要移动后续元素来保持顺序。如果需要频繁在集合的中间位置进行插入或删除操作,LinkedList更适合。

4)在创建ArrayList时,如果能够预估元素数量,可以通过指定初始容量,避免频繁的扩容操作,提高性能。

数组特点:

存储区间是连续,且占用内存严重,空间复杂也很大,时间复杂为O(1)。

优点:是随机读取效率很高,原因数组是连续(随机访问性强,查找速度快)。

缺点:插入和删除数据效率低,因插入数据,这个位置后面的数据在内存中要往后移的,且大小固定不易动态扩展。

双链表结构,添加和删除速度快;查询需要从头遍历所有节点,速度慢。不需要连续内存,不会导致内存浪费。

链表特点:

区间离散,占用内存宽松,空间复杂度小,时间复杂度O(N)。

优点:插入删除速度快,内存利用率高,没有大小固定,扩展灵活。

缺点:不能随机查找,每次都是从第一个开始遍历(查询效率低)。

使用场景:

1)需要频繁在集合的中间位置插入或删除元素;

2)不需要频繁随机访问元素;

3)需要高效的插入和删除操作而不关心空间开销,LinkedList在插入和删除操作上的性能优于ArrayList,但它需要额外的空间来存储链表节点的指针,因此在空间开销上相对较高。

三、HashMap

1.7及之前使用 数组+链表

1.7之后使用 数组+链表+红黑树

数组+链表:

HashMap数组默认长度16,加载因子默认0.75f,当数组中存储的元素 > 0.75*数组长度 时,需要扩容,将数组长度扩容为原来的2倍,以保证为2的整数次幂。

HashMap以key-value成对出现,一个key对应一个value;

put:key-value

通过key获取hash值,然后跟数组长度取模 == key-value存储在数组的下标;

然后将key、hash值、value、下一个节点,封装成一个节点,插到链表的头节点 -- 头插法

get:key

通过key获取hash值,然后跟数组长度取模 == key-value存储在数组的下标;

然后遍历数组下标元素--链表,通过判断节点的key值一致,返回对应的节点。

扩容:

由于扩容后数组长度不一致,导致按原数组长度计算的下标失效,所以在扩容后,需要将原HashMap保存元素遍历,按新的数组长度,重新计算数组下标,存储。该过程耗时,故尽量在使用HashMap时,评估实际数组的长度,在创建HashMap时指定其长度,避免出现扩容的情况。

优缺点:

数组的特点:查询效率高,插入,删除效率低。

链表的特点:查询效率低,插入删除效率高。

在HashMap底层使用数组+链表+红黑树的结构完美的解决了数组和链表的问题,使得查询和插入,删除的效率都很高。

当数组中存储的元素 > 0.75*数组长度时,需要扩容,导致HashMap至少有25%的空间浪费,无疑是使用了空间换时间的方式去提高效率。

四、SparseArray

Android为了解决HashMap存在的空间浪费问题,推出的新数据类型;采用双数组的方式+HashMap的思想+二分查找,解决HashMap浪费空间的同时,提高了效率。

缺点:SparseArray的key只能是int类型

SparseArray采用了延迟删除的机制,通过将删除KEY的Value设置DELETED,方便之后对该下标的存储进行复用;

使用二分查找,时间复杂度为O(LogN),如果没有查找到,那么取反返回左边界,再取反后,左边界即为应该插入的数组下标;

如果无法直接插入,则根据mGarbage标识(是否有潜在延迟删除的无效数据),进行数据清除,再通过System.arraycopy进行数组后移,将目标元素插入二分查找左边界对应的下标;

mSize小于等于keys.length,小于的部分为空数据或者是gc后前移的数据的原数据(也是无效数据),因此二分查找的右边界以mSize为准;

mSize包含了延迟删除后的元素个数;如果遇到频繁删除,不会触发gc机制,导致mSize 远大于有效数组长度,造成性能损耗;

mGarbage为true不一定有无效元素,因为可能被删除的元素恰好被新添加的元素覆盖;

使用场景:

key为整型;不需要频繁的删除;元素个数相对较少。

五、ArrayMap

实现了Map接口,并使用int[]数来存储key的hash值,数组的索引用作index,而使用Object[]数组来存储key<->value ,这还是比较新颖的 。

使用二分查找查找hash值在key数组中的位置,然后根据这个位置得到value数组中对应位置的元素。

和SparseArray类似,当数据有几百条时,性能会比HashMap低50%,因此ArrayMap适用于数据量很小的场景

ArrayMap和HashMap的区别:

1)ArrayMap的存在是为了解决HashMap占用内存大的问题,它内部使用了一个int数组用来存储元素的hashcode,使用了一个Object数组用来存储元素,两者根据索引对应形成key-value结构,这样就不用像HashMap那样需要额外的创建Entry对象来存储,减少了内存占用。但是在数据量比较大时,ArrayMap的性能就会远低于HashMap,因为 ArrayMap基于二分查找算法来查找元素的,并且数组的插入操作如果不是末尾的话需要挪动数组元素,效率较低。

2)而HashMap内部基于数组+单向链表+红黑树实现,也是key-value结构, 正如刚才提到的,HashMap每put一个元素都需要创建一个Entry来存放元素,导致它的内存占用会比较大,但是在大数据量的时候,因为HashMap中当出现冲突时,冲突的数据量大于8,就会从单向链表转换成红黑树,而红黑树的插入、删除、查找的时间复杂度为O(logn),相对于ArrayMap的数组而言在插入和删除操作上要快不少,所以数据量上百的情况下,使用HashMap会有更高的效率。

如何解决冲突问题:

在ArrayMap中,假设存在冲突的话,并不会像HashMap那样使用单向链表或红黑树来保留这些冲突的元素,而是全部key、value都存储到一个数组当中,然后查找的话通过二分查找进行,这也就是当数据量大时不宜用ArrayMap的原因了。

相关推荐
CYRUS_STUDIO13 分钟前
Android 反调试攻防实战:多重检测手段解析与内核级绕过方案
android·操作系统·逆向
黄林晴4 小时前
如何判断手机是否是纯血鸿蒙系统
android
火柴就是我4 小时前
flutter 之真手势冲突处理
android·flutter
法的空间4 小时前
Flutter JsonToDart 支持 JsonSchema
android·flutter·ios
循环不息优化不止5 小时前
深入解析安卓 Handle 机制
android
恋猫de小郭5 小时前
Android 将强制应用使用主题图标,你怎么看?
android·前端·flutter
jctech5 小时前
这才是2025年的插件化!ComboLite 2.0:为Compose开发者带来极致“爽”感
android·开源
Fanxt_Ja5 小时前
【LeetCode】算法详解#15 ---环形链表II
数据结构·算法·leetcode·链表
用户2018792831675 小时前
为何Handler的postDelayed不适合精准定时任务?
android
叽哥5 小时前
Kotlin学习第 8 课:Kotlin 进阶特性:简化代码与提升效率
android·java·kotlin