mysql索引的数据结构(Innodb)

首选要注意,这里的数据结构是存储在硬盘上的数据结构,不是内存中的数据结构,要重点考虑io次数.

一.不适合的数据结构:

1.Hash:不适合进行范围查询和模糊匹配查询.(有些数据库索引会使用Hash,但是只能精准匹配)

2.红黑树:可以范围查询和模糊匹配,但是和硬盘io次数比较多.

二.为数据库量身打造的数据结构(B+树):

1.B树(又称B-树):

a)本质上是N叉搜索树:一个节点保存多个key,N个key延展出N+1个节点(划分出N+1个区间).

从根节点出发,依次往下查找.

b)相较红黑树的优点:每个节点都可以存放多个元素,当总的元素个数确定的时候,节点数大大降低了,树的高度也降低了,查询时io次数减少了,查询效率提高了.

c)拆分和合并:在进行插入和删除元素的时候,一个节点可以存多个元素,但也不能没有限制的存,当达到一定数量的时候,就要把这个节点拆分,把这个节点中的一部分元素以数的子节点的方式来进行重新组织.

2.B+树:

特点:

a)N叉搜索树,但是N个元素分出N个区间节点最后一个元素就是最大值.

b)父节点的元素在子节点中重复出现(以最大值的身份).,叶子节点这一层,包含了所有元素.

c)叶子节点按照双向链表的方式,收尾相连,快速地找到上一个/下一个元素,方便范围查询.

优势:

a)特别擅长范围查询.

b)所有的查询最终会落到叶子节点,比较次数均衡,查询时间稳定.

c) 由于叶子节点上是完整的元素全集,因此表的每一行元素的其他列,都可以保存到叶子节点上,而非叶子节点,指存储构件索引的id就可以了.因此,非叶子节点的存储空间消耗非常小,可以在内存中缓存一份,这样减少了硬盘io次数,提高了查询效率.

相关推荐
Goat恶霸詹姆斯1 小时前
mysql常用语句
数据库·mysql·oracle
大模型玩家七七2 小时前
梯度累积真的省显存吗?它换走的是什么成本
java·javascript·数据库·人工智能·深度学习
曾经的三心草2 小时前
redis-9-哨兵
数据库·redis·bootstrap
明哥说编程2 小时前
Dataverse自定义表查询优化:D365集成大数据量提速实战【索引配置】
数据库·查询优化·dataverse·dataverse自定义表·索引配置·d365集成·大数据量提速
xiaowu0802 小时前
C# 拆解 “显式接口实现 + 子类强类型扩展” 的设计思想
数据库·oracle
讯方洋哥2 小时前
HarmonyOS App开发——关系型数据库应用App开发
数据库·harmonyos
惊讶的猫3 小时前
Redis持久化介绍
数据库·redis·缓存
Apple_羊先森3 小时前
ORACLE数据库巡检SQL脚本--19、磁盘读次数最高的前5条SQL语句
数据库·sql·oracle
小妖6663 小时前
js 实现快速排序算法
数据结构·算法·排序算法
全栈前端老曹4 小时前
【MongoDB】Node.js 集成 —— Mongoose ORM、Schema 设计、Model 操作
前端·javascript·数据库·mongodb·node.js·nosql·全栈