mysql索引的数据结构(Innodb)

首选要注意,这里的数据结构是存储在硬盘上的数据结构,不是内存中的数据结构,要重点考虑io次数.

一.不适合的数据结构:

1.Hash:不适合进行范围查询和模糊匹配查询.(有些数据库索引会使用Hash,但是只能精准匹配)

2.红黑树:可以范围查询和模糊匹配,但是和硬盘io次数比较多.

二.为数据库量身打造的数据结构(B+树):

1.B树(又称B-树):

a)本质上是N叉搜索树:一个节点保存多个key,N个key延展出N+1个节点(划分出N+1个区间).

从根节点出发,依次往下查找.

b)相较红黑树的优点:每个节点都可以存放多个元素,当总的元素个数确定的时候,节点数大大降低了,树的高度也降低了,查询时io次数减少了,查询效率提高了.

c)拆分和合并:在进行插入和删除元素的时候,一个节点可以存多个元素,但也不能没有限制的存,当达到一定数量的时候,就要把这个节点拆分,把这个节点中的一部分元素以数的子节点的方式来进行重新组织.

2.B+树:

特点:

a)N叉搜索树,但是N个元素分出N个区间节点最后一个元素就是最大值.

b)父节点的元素在子节点中重复出现(以最大值的身份).,叶子节点这一层,包含了所有元素.

c)叶子节点按照双向链表的方式,收尾相连,快速地找到上一个/下一个元素,方便范围查询.

优势:

a)特别擅长范围查询.

b)所有的查询最终会落到叶子节点,比较次数均衡,查询时间稳定.

c) 由于叶子节点上是完整的元素全集,因此表的每一行元素的其他列,都可以保存到叶子节点上,而非叶子节点,指存储构件索引的id就可以了.因此,非叶子节点的存储空间消耗非常小,可以在内存中缓存一份,这样减少了硬盘io次数,提高了查询效率.

相关推荐
@解忧杂货铺11 分钟前
MySQL历史版本下载及安装配置教程
数据库·mysql
hnlucky17 分钟前
《基于 Kubernetes 的 WordPress 高可用部署实践:从 MariaDB 到 Nginx 反向代理》
运维·数据库·nginx·云原生·容器·kubernetes·mariadb
dgiij22 分钟前
excel大表导入数据库
数据库·mysql·node.js·excel
多敲代码防脱发26 分钟前
导出导入Excel文件(详解-基于EasyExcel)
java·开发语言·jvm·数据库·mysql·excel
风筝超冷37 分钟前
获取高德地图JS API的安全密钥和Key的方法
服务器·mysql·js api
数据库幼崽1 小时前
MySQL 8.0 OCP 1Z0-908 51-60题
数据库·mysql·ocp
didiplus1 小时前
MySQL 8.0 OCP(1Z0-908)英文题库(31-40)
mysql·adb·ocp·数据库管理员·mysql认证
didiplus1 小时前
MySQL 8.0 OCP(1Z0-908)英文题库(21-30)
mysql·dba·认证考试·题库
数据库幼崽1 小时前
MySQL 8.0 OCP 1Z0-908 21-30题
mysql·ocp