【趋势检测和隔离】使用小波进行趋势检测和隔离研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

****🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️**座右铭:**行百里者,半于九十。

📋📋📋++本文目录如下:++🎁🎁🎁

目录

[💥1 概述](#💥1 概述)

[📚2 运行结果](#📚2 运行结果)

[🎉3 参考文献](#🎉3 参考文献)

[🌈4 Matlab代码实现](#🌈4 Matlab代码实现)


💥1 概述

本文在 MATLAB中使用小波变换从信号中隔离/消除趋势。信号趋势检测是一个重要的预处理步骤,其本身就很有用。使用 MATLAB中的小波变换检测、隔离和消除信号趋势。本文以心电图信号为例。

趋势检测和隔离是信号处理中的重要任务之一。它涉及到从信号中提取出长期趋势或周期性变化,并将其与短期变化或噪声分离开来。

小波变换是一种常用的信号处理技术,可以用于趋势检测和隔离。小波变换将信号分解为不同尺度的近似和细节系数,其中近似系数表示信号的低频成分,而细节系数表示信号的高频成分。

在趋势检测和隔离中,我们通常关注信号的低频成分,因为它们包含了信号的长期趋势。通过对信号进行小波变换,我们可以将低频成分提取出来,并与原始信号进行比较,从而检测和隔离出信号的趋势。

在小波变换中,我们可以选择不同的小波函数来适应不同的信号特性。常用的小波函数包括Daubechies小波、Haar小波、Morlet小波等。

在进行趋势检测和隔离时,我们可以通过将信号的高频成分设置为零来消除信号的趋势。这样,我们可以得到一个去趋势的信号,其中只包含了短期变化或噪声。

除了消除趋势,小波变换还可以用于信号的平滑和去噪。通过选择合适的小波函数和调整小波分解的层数,我们可以在保留信号的重要特征的同时,去除信号中的噪声和干扰。

总而言之,使用小波变换进行趋势检测和隔离是一种有效的信号处理方法。它可以帮助我们从复杂的信号中提取出有用的信息,并用于各种应用领域,如生物医学工程、金融分析、图像处理等。

📚 2 运行结果

部分代码:

%% Decompose signal into 8 subbands

w = modwt(ekg_Trend,8);

%% Multiresolution view of signal

mra1 = modwtmra(w);

approxRecon = mra1(9,:);

viewLevel8Approximation(t,ekg_Trend,approxRecon);

%% Visualize approximation subbands for level 9 and level 10

viewApproximationSubbandReconstruction(t,ekg_Trend);

%% Isolate and visualize the trend

isolateTrendPlot(t,ekg_Trend);

%% Remove the trend component from the signal

coeffs = modwt(ekg_Trend,10);

coeffs(11,:) = 0; %setting approximation coefficients at level 10 to zero

sigOut = imodwt(coeffs);

viewDetrendedSignal(t,ekg_Trend,sigOut)

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

1\]徐建,游静,张琨,等.基于小波和统计分析的软件衰退检测和趋势估计\[J\].计算机工程, 2006, 32(12):3.DOI:10.3969/j.issn.1000-3428.2006.12.010. \[2\]王春薇.隧道裂缝图像智能匹配与变化趋势检测算法研究\[D\].北京交通大学,2017. \[3\]宋文杰,刘伯峰,王平,等.基于小波---神经网络的故障劣化趋势检测\[J\].职大学报(自然科学版), 2006.DOI:CNKI:SUN:ZDXB.0.2006-02-036. ## [🌈](https://mp.weixin.qq.com/mp/appmsgalbum?__biz=Mzk0MDMzNzYwOA==&action=getalbum&album_id=2591810113208958977#wechat_redirect "🌈")****4 Matlab代码实现****

相关推荐
Coovally AI模型快速验证19 分钟前
农田扫描提速37%!基于检测置信度的无人机“智能抽查”路径规划,Coovally一键加速模型落地
深度学习·算法·yolo·计算机视觉·transformer·无人机
pusue_the_sun22 分钟前
数据结构:二叉树oj练习
c语言·数据结构·算法·二叉树
媒体人8881 小时前
GEO 优化专家孟庆涛:技术破壁者重构 AI 时代搜索逻辑
大数据·人工智能
小菜AI科技1 小时前
Windsurf 评测:这款 人工智能 IDE 是你需要的颠覆性工具吗?
人工智能
RaymondZhao341 小时前
【全面推导】策略梯度算法:公式、偏差方差与进化
人工智能·深度学习·算法·机器学习·chatgpt
zhangfeng11331 小时前
DBSCAN算法详解和参数优化,基于密度的空间聚类算法,特别擅长处理不规则形状的聚类和噪声数据
算法·机器学习·聚类
yzx9910132 小时前
小程序开发APP
开发语言·人工智能·python·yolo
AKAMAI2 小时前
通过自动化本地计算磁盘与块存储卷加密保护数据安全
人工智能·云计算
啊阿狸不会拉杆2 小时前
《算法导论》第 32 章 - 字符串匹配
开发语言·c++·算法
无规则ai2 小时前
动手学深度学习(pytorch版):第四章节—多层感知机(5)权重衰减
人工智能·pytorch·python·深度学习