【论文阅读】基于深度学习的时序预测——Crossformer

系列文章链接
论文一:2020 Informer:长时序数据预测
论文二:2021 Autoformer:长序列数据预测
论文三:2022 FEDformer:长序列数据预测
论文四:2022 Non-Stationary Transformers:非平稳性时序预测
论文五:2022 Pyraformer:基于金字塔图结构的时序预测
论文六:2023 Crossformer:多变量时序预测
论文七:2023 LSFT-Linear:质疑transformer能力的线性预测模型

论文链接:https://openreview.net/forum?id=vSVLM2j9eie

github链接:https://github.com/Thinklab-SJTU/Crossformer

参考解读:https://blog.csdn.net/qq_33431368/article/details/129483613

上海交通大学发表的论文,主要是解决多个变量之间时序关系的建模,解决基于多变量指标的时序数据处理,本文的创新点主要提现在以下几点:

  1. Dimension-Segment-Wise Embedding:对于多维时间序列,应该对每个维度的数据进行单独的数据表征,而不是在每个点位基于所有维度的数据进行数据表征,因此本文针对每个维度的指标进行独立向量化表征(线性转换+位置编码),更好地捕捉单变量的数据信息;

  2. Two-Stage注意力模块:第一步是时间维度的注意力机制,采用传统的时序transformer思想进行单维度内的时序数据建模;然后第二步再进行空间维度的建模,也就是提取多个变量之间的关联信息,也就是在变量维度进行attention计算,但是这样计算复杂度会很高,本文设计了中间变量运算简化了计算;

  3. 多层级Encoder-Decoder:由于上一步会进行two-stage的注意力运算,因此在Decoder中会分别对不同阶段的结果进行解码,模型的输入最开始是细粒度patch,随着层数增加逐渐聚合成更粗粒度的patch。这种形式可以让模型从不同的粒度提取信息,也有点像空洞卷积的架构。Decoder会利用不同层次的编码进行预测,各层的预测结果加和到一起,得到最终的预测结果(参考描述)。

相关推荐
艾醒13 分钟前
探索大语言模型(LLM):Open-WebUI的安装
人工智能·算法·全栈
AI Echoes21 分钟前
LLMOps平台:开源项目LMForge = GPTs + Coze
人工智能·python·langchain·开源·agent
风信子的猫Redamancy25 分钟前
文心大模型 X1.1:百度交出的“新深度思考”答卷
人工智能·百度·大模型·深度思考
聚客AI28 分钟前
🚀从零构建AI智能体:九大核心技术拆解与落地建议
人工智能·agent·mcp
HUIMU_42 分钟前
YOLOv5实战-GPU版本的pytorch虚拟环境配置
人工智能·pytorch·深度学习·yolo
虚行1 小时前
VisionMaster - 1.图像源
人工智能·计算机视觉
Coovally AI模型快速验证1 小时前
基于YOLO集成模型的无人机多光谱风电部件缺陷检测
人工智能·安全·yolo·目标跟踪·无人机
猫天意1 小时前
【CVPR2023】奔跑而非行走:追求更高FLOPS以实现更快神经网络
人工智能·深度学习·神经网络·算法·机器学习·卷积神经网络
杀生丸学AI1 小时前
【三维重建】3R-GS:优化相机位姿的3DGS最佳实践
人工智能·3d·aigc·三维重建·视觉大模型·高斯泼溅
羊羊小栈1 小时前
基于「YOLO目标检测 + 多模态AI分析」的PCB缺陷检测分析系统(vue+flask+数据集+模型训练)
vue.js·人工智能·yolo·目标检测·flask·毕业设计·大作业