最小生成树 — Prim算法

同Kruskal算法一样,Prim算法也是最小生成树的算法,但与Kruskal算法有较大的差别。
Prim算法整体是通过"解锁" + "选中"的方式,点 -> 边 -> 点 -> 边
因为是最小生成树,所以针对的也是无向图 ,所以可以随意选取一个点作为进入点,通过解锁这个点,可以获得从这个点出去的所有边,在通过这些边中权重最小的边解锁其他的点。如此反复。直到最小生成树的形成。

如图所示:

左侧为原始图,从a点出发(哪个点都可以,假设从a),解锁了a点(解锁的点画圈),并且解锁了从a点直接出发权重为1,2,9的三条边(边解锁为虚线),根据权重选择1的边(选择具体边改颜色)。并解锁了b点。

通过解锁的b点,可解锁权重1,3,4,9的边,此时bd边的权重最小为1,所以解锁了d的点。

解锁d后,d直接出来的边4也会进行解锁。再次选择权重较小的为2,但是此时d已经解锁过了,所以不考虑2,再次选择be为3的边解锁。

此时解锁后图形如上面所示,e点解锁后会解锁权重6、7的边。

此时所有的边都已经解锁,选择权重小的边,并且不会形成环的点,进行解锁。

最终去掉所有没被选择的边,剩余的就是最小生成树。

代码实现

基于上面图解是代码实现。点 > 边 -> 点 -> 边的解锁方式。

最外层的for循环可防"森林"。 a -> b c ->d e->f,a可以找到b,c可以找到d, e可以找到f。但是a c e之间互相没关系。

java 复制代码
public static class EdgeComparator implements Comparator<Edge> {

        @Override
        public int compare(Edge o1, Edge o2) {
            return o1.weight - o2.weight;
        }
    }

    public static Set<Edge> primMST(Graph graph) {
        //放入PriorityQueue中,并根据边的权重进行排序
        PriorityQueue<Edge> priorityQueue = new PriorityQueue<>(new EdgeComparator());
        //解锁的点
        Set<Node> setNodes = new HashSet<>();
        //构成最小生成树的所有边
        Set<Edge> result = new HashSet<>();

        //遍历图集中所有的点
        for (Node node : graph.nodes.values()) {
            //如果没解锁
            if (!setNodes.contains(node)) {
                setNodes.add(node);
                //将点的所有的边,放到PriorityQueue中排序
                for (Edge edge : node.edges) {
                    priorityQueue.add(edge);
                }

                while (!priorityQueue.isEmpty()) {
                    Edge edge = priorityQueue.poll();
                    //获取到这个边连接的to点
                    Node toNode = edge.to;
                    if (!setNodes.contains(edge.to)) {
                        //解锁to点
                        setNodes.add(toNode);
                        result.add(edge);
                        //并且将to点所有的边也都放到Queue中
                        for (Edge nextEdge : toNode.edges) {
                            priorityQueue.add(nextEdge);
                        }
                    }
                }
            }
            //如果防森林,就不break 
            break;
        }
        return result;
    }
相关推荐
dlraba8021 小时前
机器学习-----K-means算法介绍
算法·机器学习·kmeans
Lisonseekpan2 小时前
MVCC的底层实现原理是什么?
java·数据库·后端·mysql
啊阿狸不会拉杆2 小时前
《算法导论》第 14 章 - 数据结构的扩张
数据结构·c++·算法·排序算法
灰原喜欢柯南3 小时前
实战:MyBatis 中 db.properties 的正确配置与最佳实践
java·数据库·mybatis
中东大鹅3 小时前
SpringBoot实现文件上传
java·spring boot·后端
牛马程序员‍3 小时前
Day116 若依融合mqtt
java·mqtt·若依·mqttx
Q741_1473 小时前
如何判断一个数是 2 的幂 / 3 的幂 / 4 的幂 / n 的幂 位运算 总结和思考 每日一题 C++的题解与思路
开发语言·c++·算法·leetcode·位运算·总结思考
David爱编程4 小时前
Java中main 方法为何必须是static?
java·后端
小王爱学人工智能4 小时前
快速了解DBSCAN算法
算法·机器学习·支持向量机
小沈同学呀4 小时前
阿里巴巴高级Java工程师面试算法真题解析:LRU Cache实现
java·算法·面试