Wav2vec2 论文阅读看到的一些问题

Wav2vec2 论文阅读看到的一些问题

这里只是简单的思考一下论文的一些问题,不是论文解读。

Q1. 为什么wav2vec依旧需要Transformer来做推理,而不直接使用VQ生成的内容?

A1. Transformer在更长的序列上有更好的编码效果,例如论文也写Contextualized representations with Transformers。另一个因素在于对比学习本质上是区分相似性,让正样本之间更接近,让正负样本之间更远离,而不是类似CE的完全逼近。参考损失函数:
− l o g e x p ( s i m ( c t , q t ) / κ ) ∑ q ∼ Q t ^ e x p ( s i m ( c t , q ^ ) / κ ) -log \frac{exp(sim(\textbf{c}_t, \textbf{q}t) / \kappa)}{\sum{\hat{\textbf{q} \sim \textbf{Q}_t} exp(sim (\textbf{c}_t, \hat{\textbf{q}})/ \kappa)}} −log∑q∼Qt^exp(sim(ct,q^)/κ)exp(sim(ct,qt)/κ)

Q2. VQ是怎么训练的?

A2. 是联合训练的,在训练早期CodeBook是随机初始化。这个一点和HuBERT有一点不太一样,后者是提前预训练。

相关推荐
墨绿色的摆渡人9 小时前
论文笔记(一百零八)Simulation-based pipeline tailors training data for dexterous robots
论文阅读
森诺Alyson10 小时前
前沿技术借鉴研讨-2025.12.9(胎儿面部异常检测/超声标准平面检测/宫内生长受限)
论文阅读·人工智能·经验分享·深度学习·论文笔记
wzx_Eleven14 小时前
【论文阅读】多密钥低通信轮次的联邦学习安全聚合
论文阅读·深度学习·神经网络·安全·同态加密
做cv的小昊15 小时前
VLM相关论文阅读:【LoRA】Low-rank Adaptation of Large Language Models
论文阅读·人工智能·深度学习·计算机视觉·语言模型·自然语言处理·transformer
magic_ll17 小时前
【论文阅读】【yolo系列】YOLOv10: Real-Time End-to-End Object Detection
论文阅读·yolo·目标检测
北温凉17 小时前
【论文阅读】2023_B_Connectivity Analysis in EEG Data
论文阅读
m0_650108241 天前
ZeroMatch:基于预训练大视觉模型的零样本 RGB-D 点云配准
论文阅读·rgb-d点云配准·zeromatch·预训练视觉模型·零样本配准·手工几何特征
檐下翻书1731 天前
互联网企业组织结构图在线设计 扁平化架构模板
论文阅读·人工智能·信息可视化·架构·流程图·论文笔记
EEPI2 天前
【论文阅读】VLA-pilot:Towards Deploying VLA without Fine-Tuning
论文阅读
一碗白开水一2 天前
【论文阅读】VQ-VAE|Neural Discrete Representation Learning首个提出 codebook 机制的生成模型
论文阅读·人工智能·pytorch·深度学习·算法·迁移学习