Wav2vec2 论文阅读看到的一些问题

Wav2vec2 论文阅读看到的一些问题

这里只是简单的思考一下论文的一些问题,不是论文解读。

Q1. 为什么wav2vec依旧需要Transformer来做推理,而不直接使用VQ生成的内容?

A1. Transformer在更长的序列上有更好的编码效果,例如论文也写Contextualized representations with Transformers。另一个因素在于对比学习本质上是区分相似性,让正样本之间更接近,让正负样本之间更远离,而不是类似CE的完全逼近。参考损失函数:
− l o g e x p ( s i m ( c t , q t ) / κ ) ∑ q ∼ Q t ^ e x p ( s i m ( c t , q ^ ) / κ ) -log \frac{exp(sim(\textbf{c}_t, \textbf{q}t) / \kappa)}{\sum{\hat{\textbf{q} \sim \textbf{Q}_t} exp(sim (\textbf{c}_t, \hat{\textbf{q}})/ \kappa)}} −log∑q∼Qt^exp(sim(ct,q^)/κ)exp(sim(ct,qt)/κ)

Q2. VQ是怎么训练的?

A2. 是联合训练的,在训练早期CodeBook是随机初始化。这个一点和HuBERT有一点不太一样,后者是提前预训练。

相关推荐
Chandler_Song16 小时前
【读书笔记】《有限与无限的游戏》
论文阅读
无妄无望20 小时前
目标计数论文阅读(2)Learning To Count Everything
论文阅读·everything
七元权20 小时前
论文阅读-Correlate and Excite
论文阅读·深度学习·注意力机制·双目深度估计
李加号pluuuus20 小时前
【论文阅读】Language-Guided Image Tokenization for Generation
论文阅读
ZHANG8023ZHEN20 小时前
fMoE论文阅读笔记
论文阅读·笔记
张较瘦_20 小时前
[论文阅读] 人工智能 + 软件工程 | 大语言模型驱动的多来源漏洞影响库识别研究解析
论文阅读·人工智能·语言模型
有Li1 天前
基于联邦学习与神经架构搜索的可泛化重建:用于加速磁共振成像|文献速递-最新医学人工智能文献
论文阅读·人工智能·文献·医学生
川川子溢2 天前
【论文阅读】MEDDINOV3:如何调整视觉基础模型用于医学图像分割?
论文阅读
Xy-unu2 天前
[VL|RIS] RSRefSeg 2
论文阅读·人工智能·transformer·论文笔记·分割
张较瘦_2 天前
[论文阅读] 告别“数量为王”:双轨道会议模型+LS,破解AI时代学术交流困局
论文阅读·人工智能