Wav2vec2 论文阅读看到的一些问题

Wav2vec2 论文阅读看到的一些问题

这里只是简单的思考一下论文的一些问题,不是论文解读。

Q1. 为什么wav2vec依旧需要Transformer来做推理,而不直接使用VQ生成的内容?

A1. Transformer在更长的序列上有更好的编码效果,例如论文也写Contextualized representations with Transformers。另一个因素在于对比学习本质上是区分相似性,让正样本之间更接近,让正负样本之间更远离,而不是类似CE的完全逼近。参考损失函数:
− l o g e x p ( s i m ( c t , q t ) / κ ) ∑ q ∼ Q t ^ e x p ( s i m ( c t , q ^ ) / κ ) -log \frac{exp(sim(\textbf{c}_t, \textbf{q}t) / \kappa)}{\sum{\hat{\textbf{q} \sim \textbf{Q}_t} exp(sim (\textbf{c}_t, \hat{\textbf{q}})/ \kappa)}} −log∑q∼Qt^exp(sim(ct,q^)/κ)exp(sim(ct,qt)/κ)

Q2. VQ是怎么训练的?

A2. 是联合训练的,在训练早期CodeBook是随机初始化。这个一点和HuBERT有一点不太一样,后者是提前预训练。

相关推荐
檐下翻书1732 分钟前
从入门到精通:流程图制作学习路径规划
论文阅读·人工智能·学习·算法·流程图·论文笔记
iiiiii112 小时前
【论文阅读笔记】多实例学习方法 Diverse Density(DD):在特征空间中寻找正概念的坐标
论文阅读·人工智能·笔记·机器学习·ai·学习方法·多实例学习
ModestCoder_3 小时前
【学习笔记】Diffusion Policy for Robotics
论文阅读·人工智能·笔记·学习·机器人·强化学习·具身智能
川西胖墩墩7 小时前
流程图在算法设计中的实战应用
数据库·论文阅读·人工智能·职场和发展·流程图
檐下翻书1732 天前
流程图配色与美化:让你的图表会“说话”
论文阅读·人工智能·信息可视化·流程图·论文笔记
wbzuo4 天前
Clip:Learning Transferable Visual Models From Natural Language Supervision
论文阅读·人工智能·transformer
想成为PhD的小提琴手5 天前
论文阅读13——基于大语言模型和视觉模态融合的可解释端到端自动驾驶框架:DriveLLM-V的设计与应用
论文阅读·语言模型·自动驾驶
想看雪的瓜5 天前
Origin将2D普通的XPS曲线图升级为三维XPS瀑布图
论文阅读·论文笔记
DuHz6 天前
基于信号分解的FMCW雷达相互干扰抑制——论文阅读
论文阅读·算法·汽车·信息与通信·毫米波雷达
m0_650108246 天前
MiniGPT-4:解锁 LLM 驱动的高级视觉语言能力
论文阅读·开源·视觉语言大模型·minigpt-4·跨模态对齐·强llm+视觉对齐