Wav2vec2 论文阅读看到的一些问题

Wav2vec2 论文阅读看到的一些问题

这里只是简单的思考一下论文的一些问题,不是论文解读。

Q1. 为什么wav2vec依旧需要Transformer来做推理,而不直接使用VQ生成的内容?

A1. Transformer在更长的序列上有更好的编码效果,例如论文也写Contextualized representations with Transformers。另一个因素在于对比学习本质上是区分相似性,让正样本之间更接近,让正负样本之间更远离,而不是类似CE的完全逼近。参考损失函数:
− l o g e x p ( s i m ( c t , q t ) / κ ) ∑ q ∼ Q t ^ e x p ( s i m ( c t , q ^ ) / κ ) -log \frac{exp(sim(\textbf{c}_t, \textbf{q}t) / \kappa)}{\sum{\hat{\textbf{q} \sim \textbf{Q}_t} exp(sim (\textbf{c}_t, \hat{\textbf{q}})/ \kappa)}} −log∑q∼Qt^exp(sim(ct,q^)/κ)exp(sim(ct,qt)/κ)

Q2. VQ是怎么训练的?

A2. 是联合训练的,在训练早期CodeBook是随机初始化。这个一点和HuBERT有一点不太一样,后者是提前预训练。

相关推荐
PigeonGuan2 小时前
论文阅读 2025-8-9 [DiC, DropKey]
论文阅读
网安INF2 小时前
【论文阅读】-《SIGN-OPT: A QUERY-EFFICIENT HARD-LABEL ADVERSARIAL ATTACK》
论文阅读·人工智能·网络安全·对抗攻击
网安INF19 小时前
【论文阅读】-《HopSkipJumpAttack: A Query-Efficient Decision-Based Attack》
论文阅读·人工智能·深度学习·网络安全·对抗攻击
张较瘦_21 小时前
[论文阅读] 软件工程工具 | EVOSCAT可视化工具如何重塑软件演化研究
论文阅读·软件工程
果粒橙_LGC21 小时前
论文阅读系列(一)Qwen-Image Technical Report
论文阅读·人工智能·学习
AustinCyy21 小时前
【论文笔记】Multi-Agent Based Character Simulation for Story Writing
论文阅读
张较瘦_1 天前
[论文阅读] 人工智能 | 当Hugging Face遇上GitHub:预训练语言模型的跨平台同步难题与解决方案
论文阅读·人工智能·github
dundunmm1 天前
【论文阅读】SIMBA: single-cell embedding along with features(1)
论文阅读·深度学习·神经网络·embedding·生物信息·单细胞·多组学
TuringAcademy2 天前
AAAI爆款:目标检测新范式,模块化设计封神之作
论文阅读·人工智能·目标检测·论文笔记
图灵学术计算机论文辅导2 天前
论文推荐|迁移学习+多模态特征融合
论文阅读·人工智能·深度学习·计算机网络·算法·计算机视觉·目标跟踪