【Rust】Rust学习 第十一章编写自动化测试

Rust 是一个相当注重正确性的编程语言,不过正确性是一个难以证明的复杂主题。Rust 的类型系统在此问题上下了很大的功夫,不过它不可能捕获所有种类的错误。为此,Rust 也在语言本身包含了编写软件测试的支持。

编写一个叫做 add_two 的将传递给它的值加二的函数。它的签名有一个整型参数并返回一个整型值。当实现和编译这个函数时,Rust 会进行所有目前我们已经见过的类型检查和借用检查,例如,这些检查会确保我们不会传递 String 或无效的引用给这个函数。Rust 所 不能 检查的是这个函数是否会准确的完成我们期望的工作:返回参数加二后的值,而不是比如说参数加 10 或减 50 的值!这也就是测试出场的地方。

可以编写测试断言,比如说,当传递 3add_two 函数时,返回值是 5。无论何时对代码进行修改,都可以运行测试来确保任何现存的正确行为没有被改变。

11.1 编写测试

如何编写测试

Rust 中的测试函数是用来验证非测试代码是否按照期望的方式运行的。测试函数体通常执行如下三种操作:

  1. 设置任何所需的数据或状态
  2. 运行需要测试的代码
  3. 断言其结果是我们所期望的

测试函数剖析

作为最简单例子,Rust 中的测试就是一个带有 test 属性注解的函数。 属性(attribute)是关于 Rust 代码片段的元数据;第五章中结构体中用到的 derive 属性就是一个例子。**为了将一个函数变成测试函数,需要在 fn 行之前加上 #[test]。**当使用 cargo test 命令运行测试时,Rust 会构建一个测试执行程序用来调用标记了 test 属性的函数,并报告每一个测试是通过还是失败。

创建一个新的库项目 adder

$ cargo new adder --lib
     Created library `adder` project
$ cd adder

新建后的默认代码是,判断加法

rust 复制代码
pub fn add(left: usize, right: usize) -> usize {
    left + right
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn it_works() {
        let result = add(2, 2);
        assert_eq!(result, 4);
    }
}

使用

bash 复制代码
cargo test

结果

Cargo 编译并运行了测试。在 CompilingFinishedRunning 这几行之后,可以看到 running 1 test 这一行。下一行显示了生成的测试函数的名称,它是 it_works,以及测试的运行结果,ok。接着可以看到全体测试运行结果的摘要:test result: ok. 意味着所有测试都通过了。1 passed; 0 failed 表示通过或失败的测试数量。

因为之前我们并没有将任何测试标记为忽略,所以摘要中会显示 0 ignored。我们也没有过滤需要运行的测试,所以摘要中会显示0 filtered out

0 measured 统计是针对性能测试的。性能测试(benchmark tests)在编写本书时,仍只能用于 Rust 开发版(nightly Rust)。

测试输出中的以 Doc-tests adder 开头的这一部分是所有文档测试的结果。我们现在并没有任何文档测试,不过 Rust 会编译任何在 API 文档中的代码示例。这个功能帮助我们使文档和代码保持同步!

改变测试的名称并看看这如何改变测试的输出。修改测名称

rust 复制代码
pub fn add(left: usize, right: usize) -> usize {
    left + right
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    // 这里修改了测试名称
    fn exploration() {
        let result = add(2, 2);
        assert_eq!(result, 4);
    }
}

结果

让我们增加另一个测试,不过这一次是一个会失败的测试!当测试函数中出现 panic 时测试就失败了。每一个测试都在一个新线程中运行,当主线程发现测试线程异常了,就将对应测试标记为失败。第九章讲到了最简单的造成 panic 的方法:调用 panic! 宏。

rust 复制代码
pub fn add(left: usize, right: usize) -> usize {
    left + right
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn exploration() {
        let result = add(2, 2);
        assert_eq!(result, 4);
    }

    // 新增错误测试
    #[test]
    fn another() {
        panic!("Make this test fail");
    }


}

结果

再次 cargo test 运行测试。它表明 exploration 测试通过了而 another 失败了

test tests::another 这一行是 FAILED 而不是 ok 了。在单独测试结果和摘要之间多了两个新的部分:第一个部分显示了测试失败的详细原因。在这个例子中,another 因为在src/lib.rs 的第 10 行 panicked at 'Make this test fail' 而失败。下一部分列出了所有失败的测试,这在有很多测试和很多失败测试的详细输出时很有帮助。

最后是摘要行:总体上讲,测试结果是 FAILED。有一个测试通过和一个测试失败。

使用assert!宏来检查结果

assert! 宏由标准库提供,在希望确保测试中一些条件为 true 时非常有用。需要向 assert! 宏提供一个求值为布尔值的参数。如果值是 trueassert! 什么也不做,同时测试会通过。如果值为 falseassert! 调用 panic! 宏,这会导致测试失败。assert! 宏帮助我们检查代码是否以期望的方式运行。

rust 复制代码
// 结构体
struct Rectangle {
    width: u32,
    height: u32,
}

// 结构体实现了can_hold方法
impl Rectangle {
    fn can_hold(&self, other: &Rectangle) -> bool {
        self.width > other.width && self.height > other.height
    }
}

// 测试
#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn larger_can_hold_smaller() {
        let larger = Rectangle { width: 8, height: 7 };
        let smaller = Rectangle { width: 5, height: 1 };

        assert!(larger.can_hold(&smaller));
    }
}

注意在 tests 模块中新增加了一行:use super::*;

我们将测试命名为 larger_can_hold_smaller,并创建所需的两个 Rectangle 实例。接着调用 assert! 宏并传递 larger.can_hold(&smaller) 调用的结果作为参数。这个表达式预期会返回 true,所以测试应该通过。

结果

再来增加另一个测试,这一回断言一个更小的矩形不能放下一个更大的矩形:

rust 复制代码
fn main() {}
#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn larger_can_hold_smaller() {
        // --snip--
    }

    #[test]
    fn smaller_cannot_hold_larger() {
        let larger = Rectangle { width: 8, height: 7 };
        let smaller = Rectangle { width: 5, height: 1 };

        assert!(!smaller.can_hold(&larger));
    }
}

也通过了

如果引入一个 bug 的话测试结果会发生什么。将 can_hold 方法中比较长度时本应使用大于号的地方改成小于号:

rust 复制代码
impl Rectangle {
    fn can_hold(&self, other: &Rectangle) -> bool {
        self.width < other.width && self.height > other.height
    }
}

结果

我们的测试捕获了 bug!因为 larger.length 是 8 而 smaller.length 是 5,can_hold 中的长度比较现在因为 8 不小于 5 而返回 false

使用assert_eq!和assert_ne!宏来测试相等

测试功能的一个常用方法是将需要测试代码的值与期望值做比较,并检查是否相等。可以通过向 assert! 宏传递一个使用 == 运算符的表达式来做到。不过这个操作实在是太常见了,以至于标准库提供了一对宏来更方便的处理这些操作 ------ assert_eq!assert_ne!。这两个宏分别比较两个值是相等还是不相等。当断言失败时他们也会打印出这两个值具体是什么,以便于观察测试 为什么 失败,而 assert! 只会打印出它从 == 表达式中得到了 false 值,而不是导致 false 的两个值。

rust 复制代码
pub fn add_two(a: i32) -> i32 {
    a + 2
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn it_adds_two() {
        assert_eq!(4, add_two(2));
    }
}

传递给 assert_eq! 宏的第一个参数 4 ,等于调用 add_two(2) 的结果。测试中的这一行 test tests::it_adds_two ... okok 表明测试通过!

在代码中引入一个 bug 来看看使用 assert_eq! 的测试失败是什么样的。

rust 复制代码
pub fn add_two(a: i32) -> i32 {
    a + 3      // 这里修改了
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn it_adds_two() {
        assert_eq!(4, add_two(2));
    }
}

结果

测试捕获到了 bug!it_adds_two 测试失败,显示信息 ``assertion failed: (left == right)``` 并表明 left4right5。这个信息有助于我们开始调试:它说 assert_eq!left参数是4,而 right参数,也就是add_two(2)的结果,是5`。

需要注意的是,在一些语言和测试框架中,断言两个值相等的函数的参数叫做 expectedactual,而且指定参数的顺序是很关键的。然而在 Rust 中,他们则叫做 leftright,同时指定期望的值和被测试代码产生的值的顺序并不重要。这个测试中的断言也可以写成 assert_eq!(add_two(2), 4),这时失败信息会变成 ``assertion failed: (left == right)``` 其中 left5right4`。

assert_ne! 宏在传递给它的两个值不相等时通过,而在相等时失败。

自定义失败信息

也可以向 assert!assert_eq!assert_ne! 宏传递一个可选的失败信息参数,可以在测试失败时将自定义失败信息一同打印出来。任何在 assert! 的一个必需参数和 assert_eq!assert_ne! 的两个必需参数之后指定的参数都会传递给 format! 宏,所以可以传递一个包含 {} 占位符的格式字符串和需要放入占位符的值。自定义信息有助于记录断言的意义;当测试失败时就能更好的理解代码出了什么问题。

例如,比如说有一个根据人名进行问候的函数,而我们希望测试将传递给函数的人名显示在输出中:

rust 复制代码
pub fn greeting(name: &str) -> String {
    format!("Hello {}!", name)
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn greeting_contains_name() {
        let result = greeting("Carol");
        assert!(result.contains("Carol"));
    }
}

结果

这个程序的需求还没有被确定,因此问候文本开头的 Hello 文本很可能会改变。然而我们并不想在需求改变时不得不更新测试,所以相比检查 greeting 函数返回的确切值,我们将仅仅断言输出的文本中包含输入参数。

让我们通过将 greeting 改为不包含 name 来在代码中引入一个 bug 来测试失败时是怎样的:

rust 复制代码
pub fn greeting(name: &str) -> String {
    String::from("Hello!")
}

结果

结果仅仅告诉了我们断言失败了和失败的行号。一个更有用的失败信息应该打印出 greeting 函数的值。让我们为测试函数增加一个自定义失败信息参数:带占位符的格式字符串,以及 greeting 函数的值:

rust 复制代码
#[test]
fn greeting_contains_name() {
    let result = greeting("Carol");
    assert!(
        result.contains("Carol"),
        "Greeting did not contain name, value was `{}`", result
    );
}

结果

使用should_panic检查panic

除了检查代码是否返回期望的正确的值之外,检查代码是否按照期望处理错误也是很重要的。

可以通过对函数增加另一个属性 should_panic 来实现这些。这个属性在函数中的代码 panic 时会通过,而在其中的代码没有 panic 时失败。

rust 复制代码
pub struct Guess {
    value: i32,
}

impl Guess {
    pub fn new(value: i32) -> Guess {
        if value < 1 || value > 100 {
            panic!("Guess value must be between 1 and 100, got {}.", value);
        }

        Guess {
            value
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    #[should_panic]
    fn greater_than_100() {
        Guess::new(200);
    }
}

结果

看起来不错!现在在代码中引入 bug,移除 new 函数在值大于 100 时会 panic 的条件:

rust 复制代码
fn main() {}
pub struct Guess {
    value: i32,
}

// --snip--

impl Guess {
    pub fn new(value: i32) -> Guess {
        if value < 1  {
            panic!("Guess value must be between 1 and 100, got {}.", value);
        }

        Guess {
            value
        }
    }
}

结果

这回并没有得到非常有用的信息,不过一旦我们观察测试函数,会发现它标注了 #[should_panic]。这个错误意味着代码中测试函数 Guess::new(200) 并没有产生 panic。

将Result<T,E>用于测试

也可以使用 Result<T, E> 编写测试!这里是第一个例子采用了 Result:

rust 复制代码
#![allow(unused_variables)]
fn main() {
#[cfg(test)]
mod tests {
    #[test]
    fn it_works() -> Result<(), String> {
        if 2 + 2 == 4 {
            Ok(())
        } else {
            Err(String::from("two plus two does not equal four"))
        }
    }
}
}

现在 it_works 函数的返回值类型为 Result<(), String>。在函数体中,不同于调用 assert_eq! 宏,而是在测试通过时返回 Ok(()),在测试失败时返回带有 StringErr

这样编写测试来返回 Result<T, E> 就可以在函数体中使用问号运算符,如此可以方便的编写任何运算符会返回 Err 成员的测试。

不能对这些使用 Result<T, E> 的测试使用 #[should_panic] 注解。相反应该在测试失败时直接返回 Err 值。

11.2 运行测试

11.3 测试的组织结构

用到再学

参考: 测试 - Rust 程序设计语言 简体中文版 (bootcss.com)

相关推荐
A尘埃几秒前
SpringBoot的数据访问
java·spring boot·后端
yang-23071 分钟前
端口冲突的解决方案以及SpringBoot自动检测可用端口demo
java·spring boot·后端
IM_DALLA2 分钟前
【Verilog学习日常】—牛客网刷题—Verilog进阶挑战—VL25
学习·fpga开发·verilog学习
Marst Code7 分钟前
(Django)初步使用
后端·python·django
代码之光_198014 分钟前
SpringBoot校园资料分享平台:设计与实现
java·spring boot·后端
编程老船长26 分钟前
第26章 Java操作Mongodb实现数据持久化
数据库·后端·mongodb
丶Darling.29 分钟前
LeetCode Hot100 | Day1 | 二叉树:二叉树的直径
数据结构·c++·学习·算法·leetcode·二叉树
wjs202444 分钟前
XSLT 实例:掌握 XML 转换的艺术
开发语言
IT果果日记1 小时前
DataX+Crontab实现多任务顺序定时同步
后端
萧鼎1 小时前
Python第三方库选择与使用陷阱避免
开发语言·python