《零基础实践深度学习》(第2版)学习笔记,(二)机器学习和深度学习综述

文章目录

  • [1. 人工智能、机器学习、深度学习的关系](#1. 人工智能、机器学习、深度学习的关系)
  • [2. 机器学习](#2. 机器学习)
    • [2.1 实现原理](#2.1 实现原理)
    • [2.2 如何实施](#2.2 如何实施)
  • [3. 深度学习](#3. 深度学习)

1. 人工智能、机器学习、深度学习的关系

**人工智能(Artificial Intelligence,AI)**是研发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

**机器学习(Machine Learning,ML)**是当前比较有效的一种实现人工智能的方式。

**深度学习(Deep Learning,DL)**是机器学习算法中最热门的一个分支,近些年取得了显著的进展,并替代了大多数传统机器学习算法。


2. 机器学习

区别于人工智能,机器学习、尤其是监督学习则有更加明确的指代。机器学习是专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构,使之不断改善自身的性能。


2.1 实现原理

机器学习的实现可以分成两步:训练和预测,类似于归纳和演绎:

  • 归纳: 从具体案例中抽象一般规律,机器学习中的"训练"亦是如此。从一定数量的样本(已知模型输入 𝐱 和模型输出 𝑦 )中,学习输出 𝑦 与输入 𝐱 的关系(可以想象成是某种表达式)。
  • 演绎: 从一般规律推导出具体案例的结果,机器学习中的"预测"亦是如此。基于训练得到的 𝑦 与 𝐱 之间的关系,如出现新的输入 𝐱,计算出输出 𝑦。通常情况下,如果通过模型计算的输出和真实场景的输出一致,则说明模型是有效的。


2.2 如何实施

是否有更生动的表达?


3. 深度学习


神经网络核心概念

TBD.

相关推荐
IMER SIMPLE4 小时前
人工智能-python-深度学习-经典神经网络AlexNet
人工智能·python·深度学习
UQI-LIUWJ6 小时前
unsloth笔记:运行&微调 gemma
人工智能·笔记·深度学习
THMAIL6 小时前
深度学习从入门到精通 - 生成对抗网络(GAN)实战:创造逼真图像的魔法艺术
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·cnn
北京地铁1号线6 小时前
GPT(Generative Pre-trained Transformer)模型架构与损失函数介绍
gpt·深度学习·transformer
fantasy_arch7 小时前
9.3深度循环神经网络
人工智能·rnn·深度学习
Shiyuan79 小时前
【检索通知】2025年IEEE第二届深度学习与计算机视觉国际会议检索
人工智能·深度学习·计算机视觉
cyyt11 小时前
深度学习周报(9.1~9.7)
人工智能·深度学习
max50060012 小时前
图像处理:实现多图点重叠效果
开发语言·图像处理·人工智能·python·深度学习·音视频
西猫雷婶15 小时前
scikit-learn/sklearn学习|广义线性回归损失函数的基本表达式
深度学习·神经网络·学习·机器学习·线性回归·scikit-learn·概率论
IMER SIMPLE15 小时前
人工智能-python-深度学习-神经网络-MobileNet V1&V2
人工智能·python·深度学习