《零基础实践深度学习》(第2版)学习笔记,(二)机器学习和深度学习综述

文章目录

  • [1. 人工智能、机器学习、深度学习的关系](#1. 人工智能、机器学习、深度学习的关系)
  • [2. 机器学习](#2. 机器学习)
    • [2.1 实现原理](#2.1 实现原理)
    • [2.2 如何实施](#2.2 如何实施)
  • [3. 深度学习](#3. 深度学习)

1. 人工智能、机器学习、深度学习的关系

**人工智能(Artificial Intelligence,AI)**是研发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

**机器学习(Machine Learning,ML)**是当前比较有效的一种实现人工智能的方式。

**深度学习(Deep Learning,DL)**是机器学习算法中最热门的一个分支,近些年取得了显著的进展,并替代了大多数传统机器学习算法。


2. 机器学习

区别于人工智能,机器学习、尤其是监督学习则有更加明确的指代。机器学习是专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构,使之不断改善自身的性能。


2.1 实现原理

机器学习的实现可以分成两步:训练和预测,类似于归纳和演绎:

  • 归纳: 从具体案例中抽象一般规律,机器学习中的"训练"亦是如此。从一定数量的样本(已知模型输入 𝐱 和模型输出 𝑦 )中,学习输出 𝑦 与输入 𝐱 的关系(可以想象成是某种表达式)。
  • 演绎: 从一般规律推导出具体案例的结果,机器学习中的"预测"亦是如此。基于训练得到的 𝑦 与 𝐱 之间的关系,如出现新的输入 𝐱,计算出输出 𝑦。通常情况下,如果通过模型计算的输出和真实场景的输出一致,则说明模型是有效的。


2.2 如何实施

是否有更生动的表达?


3. 深度学习


神经网络核心概念

TBD.

相关推荐
Yan-英杰2 分钟前
百度搜索和文心智能体接入DeepSeek满血版——AI搜索的新纪元
图像处理·人工智能·python·深度学习·deepseek
taoqick2 小时前
对PosWiseFFN的改进: MoE、PKM、UltraMem
人工智能·pytorch·深度学习
charles_vaez5 小时前
开源模型应用落地-LangGraph101-探索 LangGraph 短期记忆
深度学习·语言模型·自然语言处理
WHATEVER_LEO6 小时前
【每日论文】Latent Radiance Fields with 3D-aware 2D Representations
人工智能·深度学习·神经网络·机器学习·计算机视觉·自然语言处理
Kai HVZ7 小时前
《深度学习》——调整学习率和保存使用最优模型
人工智能·深度学习·学习
爱吃香蕉的阿豪10 小时前
在c#中虚方法和抽象类的区别
深度学习·c#·.netcore
奋斗的袍子00710 小时前
DeepSeek-R1本地部署详细指南!(Ollama+Chatbox AI+Open WebUI)
人工智能·后端·深度学习·大模型·webui·本地部署·deepseek
Francek Chen11 小时前
【现代深度学习技术】卷积神经网络 | 从全连接层到卷积
人工智能·pytorch·深度学习·神经网络·cnn
王国强200912 小时前
循环神经网络2-文本预处理:从原始文本到数字索引
深度学习