OpenCV图像处理——轮廓检测

目录

图像的轮廓

查找轮廓

python 复制代码
binary,contours,hierarchy=cv.findContours(img,mode,method)





绘制轮廓

python 复制代码
cv.drawContours(img,coutours,index,color,width)
python 复制代码
import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt

img = cv2.imread('./汪学长的随堂资料/4/图像操作/contours.png')
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
canny=cv.Canny(img_gray,127,255,0)
contours,hi=cv.findContours(canny,cv.RETR_TREE,cv.CHAIN_APPROX_SIMPLE)
img=cv.drawContours(img,contours,-1,(0,0,255),2)
plt.imshow(img[:,:,::-1])

轮廓的特征

轮廓面积

python 复制代码
area=cv.contourArea(cnt)

轮廓周长

python 复制代码
perimeter=cv.arcLength(cnt,isclosed)

轮廓近似

python 复制代码
approx=cv.approxPolyDP(cnt,epsilon,isclosed)
python 复制代码
img = cv2.imread('./汪学长的随堂资料/4/图像操作/contours2.png')

img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(img_gray, 127, 255, 0)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt=contours[0]
area=cv.contourArea(cnt)
length=cv.arcLength(cnt,True)
esplion=0.1*length
approx=cv.approxPolyDP(cnt,esplion,True)
img=cv.polylines(img,[approx],True,(0,0,255),2)
plt.imshow(img[:,:,::-1])

凸包

python 复制代码
hull=cv.convexHull(points,clockwise,returnPoints)


python 复制代码
img=cv.imread('./image/star 2.jpeg')
img1=img.copy()
imggray=cv.cvtColor(img,cv.COLOR_BGR2GRAY)
canny=cv.canny(imggray,127,255,0)
contours,hi=cv.findContours(canny,cv.RETR_TREE,cv.CHAIN_APPROX_SIMPLE)
hulls=[]
for cnt in contours:
    hull=cv.convexHull(cnt)
    hulls.append(hull)
img1=cv.drawContours(img1,hulls,-1,(0,255,0),2)
plt.imshow(img1[:,:,::-1])

边界矩形


python 复制代码
img=cv.imread('./image/arrows,jpg')
img_gray=cv.cvtColor(img,cv.COLOR_BGR2GRAY)
ret,thresh=cv.threshold(img_gray,127,255,0)
contours,hi=cv.findContours(thresh,1,2)
cnt=contours[1]
x,y,w,h=cv.boundingRect(cnt)
imgRect=cv.rectangle(img,(x,y),(x+w,y+h),(0,255,0),3)
plt.imshow(imgRect[:,:,::-1])
python 复制代码
s=cv.minAreaRect(cnt)
a=cv.boxPoints(s)
a=np.int0(a)
cv.polylines(imgRect,[a],True,(0,0,255),3)
plt.imshow(imgRect[:,:,::-1])

最小外接圆

python 复制代码
(x,y),r=cv.minEnclosingCircle(cnt)
center=(int(x),int(y))
r=int(r)
imgcircle=cv.circle(img,center,r,(0,255,0),3)
plt.imshow(imgcircle[:,:,::-1])

椭圆拟合

python 复制代码
ellipse=cv.fitEllipse(cnt)
imgellipse=cv.ellipse(img,ellipse,(0,255,255,3))
plt.imshow(imgellipse[:,:,::-1])

直线拟合

python 复制代码
output=cv.fitLine(points,distType,param,aeps)
python 复制代码
[vx,vy,x,y]=cv.fitLine(cnt,cv.DIST_L2,0,0.01,0.01)
rows,cols=img.shape[:2]
lefty=int((-x*vy/vx)+y)
righty=int(((cols-x)*vy/vx)+y)
imgline=cv.line(img,(0,lefty),(cols-1,righty),(0,0,255),3)
plt.imshow(imgline[:,:,::-1])

图像的矩特征

矩的概念

图像中的矩特征


python 复制代码
moments(array,binaryImage=False)
python 复制代码
img=cv.imread('./image/arrows.jpg',0)
imgmn=cv.moments(img)
imghu=cv.HuMoments(imgmn)
ret,thresh=cv.threshold(img,127,255,0)
contours,hi=cv.findContours(thresh,1,2)
cnt=contours[1]
mn=cv.moments(cnt)
hu=cv.HuMoments(mn)
相关推荐
volcanical1 小时前
Dataset Distillation with Attention Labels for Fine-tuning BERT
人工智能·深度学习·bert
L_cl1 小时前
【NLP 17、NLP的基础——分词】
人工智能·自然语言处理
西西弗Sisyphus1 小时前
大型语言模型(LLMs)演化树 Large Language Models
人工智能·语言模型·自然语言处理·大模型
bryant_meng3 小时前
【python】OpenCV—Image Moments
开发语言·python·opencv·moments·图片矩
车载诊断技术3 小时前
电子电气架构 --- 什么是EPS?
网络·人工智能·安全·架构·汽车·需求分析
KevinRay_3 小时前
Python超能力:高级技巧让你的代码飞起来
网络·人工智能·python·lambda表达式·列表推导式·python高级技巧
跃跃欲试-迪之3 小时前
animatediff 模型网盘分享
人工智能·stable diffusion
Captain823Jack4 小时前
nlp新词发现——浅析 TF·IDF
人工智能·python·深度学习·神经网络·算法·自然语言处理
被制作时长两年半的个人练习生4 小时前
【AscendC】ReduceSum中指定workLocal大小时如何计算
人工智能·算子开发·ascendc
Captain823Jack4 小时前
w04_nlp大模型训练·中文分词
人工智能·python·深度学习·神经网络·算法·自然语言处理·中文分词