Transformer(一)简述(注意力机制,NLP,CV通用模型)

目录

1.Encoder

1.1简单理解Attention

1.2.什么是self-attention

1.3.怎么计算self-attention

1.4.multi-headed(q,k,v不区分大小写)

1.5.位置信息表达

2.Decoder(待补充)

3.BERT

参考文献


1.Encoder

1.1简单理解Attention

比方说,下图中的热度图中我们希望专注于小鸟,而不关注背景信息。那么如何关注文本和图像中的重点呢。

具体而言,下面的文本为she is eating a green,用不同的颜色表示每一个单词的向量,然后对每一个向量进行重构,比方说she本来由红色向量表示,重构之后,其向量包含上下文其他向量的部分(下图只管看就是按照相关程度,颜色比重各不相同,然后重新构成一个向量),其实这一块就是算出权值,每个词对其他词的贡献,再根据这个权值整合每个词自身的向量。

1.2.什么是self-attention

如下图所示,两句话中的it根据上下文语句不同,指代前面的名词也不同,所以希望用注意力机制,来专注他们之间的关系。

自注意力机制:如下图所示,两句话中,以it为例只计算本句中每个词和自己的关系

注意力机制:如下图所示,it会计算其他句和自己的关系。

同样如下图右侧所示,以it为例,线条越深和自身关系越强

1.3.怎么计算self-attention

如下图所示,有两个文本Thinking,Machines,在进行计算时,我们要知道每一个词和自己的关系以及和其他词的关系,也就是说要计算Thinking和自身的关系,以及和Machines的关系,以及Machines和自身的关系,以及和Thinking的关系然后将其向量化表示为x1和x2。接下来为了实现注意力机制,我们提供了三个向量,q,k,v,以Thinking为例,当Thinking想要寻找和自己的关系以及和Machines的关系时,必须要知道它要查什么,所以需要一个查找对象也就是q,同样Thinking和Machines自身作为被查找的单位,当被查询时,也需要提供我有或者没有被查东西的证据,也就是k,具象化理解,可以理解为,古代官府追查杀手,必然会拿着杀手画像q,那么每家每户都要提供自己的身份信息k,证明自己是不是杀手。v后面补充。

再看一下q,k,v是咋来的,对于单词向量x1和x2用一个权重矩阵w分别得到q,k,v。

再看一下词与词之间的匹配程度如何确定,先说一个概念,内积相乘越大两者关系越近,所以当计算Thinking和自己的匹配程度时,用q1*k1=112,计算Thinking和Machines匹配程度时用q1*k2=96计算,很明显和自己的匹配程度更高。

再进一步计算

首先看softmax(Q*K/)*V,其中这样理解,当高维Q*K的结果必然比低维相乘大,但在实际应用中,维数并不应该对结果产生影响,所以用消除维度影响。对照下图左侧的公式,来看下图右侧,在得到112和96之后,进行维度消除操作,得到14和12,然后得到彼此的影响概率,0.88和0.12,再利用v对x重构得到z。

流程如下图所示,Q和每一个K相乘再结合相应的V最后加权得到Attention Value

1.4.multi-headed(q,k,v不区分大小写)

上面我们发现一个x只能得到一个z,现在希望一个x可以得到不同z,所以用不同的w得到不同的q,k,v。假设一个x最后得到8个不同的z,将其拼接在一起太大了,所以用全连接层再对其降维。

举个例子

1.5.位置信息表达

前面我们发现计算时会对每一个单词进行计算,所以没考虑位置因素,但在这里希望把位置因素考虑进去,位置用p表示,最后加入到重构后的z中。

2.Decoder(待补充)

前面是用encoder处理输入得到不同的组合z,这回需要对z进行输出操作。 此时decoder提供q,查询模型需要啥。k和v由输入提供。具体我们可以看下图右侧流程图,左为Encoder输入K,V。右下为decoder输入Q。

再说一下MASK机制,简单理解,此时标签出了I am a,那么对于a可以利用前三个词,但对于第四个没出的不能使用,所以要给它掩盖起来。

3.BERT

替代encoder

参考文献

1.Transformer原理精讲_哔哩哔哩_bilibili

2.67 自注意力【动手学深度学习v2】_哔哩哔哩_bilibili

  1. 68 Transformer【动手学深度学习v2】_哔哩哔哩_bilibili

4.(重点)2023年AI爆火方向:基于Transformer模型的计算机视觉实战集锦【医疗图像分割、VIT算法、swintransformer、DETR目标检测...】_哔哩哔哩_bilibili

相关推荐
youcans_5 分钟前
【DeepSeek论文精读】13. DeepSeek-OCR:上下文光学压缩
论文阅读·人工智能·计算机视觉·ocr·deepseek
m0_650108247 分钟前
【论文精读】Latent-Shift:基于时间偏移模块的高效文本生成视频技术
人工智能·论文精读·文本生成视频·潜在扩散模型·时间偏移模块·高效生成式人工智能
岁月的眸27 分钟前
【循环神经网络基础】
人工智能·rnn·深度学习
文火冰糖的硅基工坊28 分钟前
[人工智能-大模型-35]:模型层技术 - 大模型的能力与应用场景
人工智能·神经网络·架构·transformer
GIS数据转换器1 小时前
2025无人机在农业生态中的应用实践
大数据·网络·人工智能·安全·无人机
syso_稻草人1 小时前
基于 ComfyUI + Wan2.2 animate实现 AI 视频人物换衣:完整工作流解析与资源整合(附一键包)
人工智能·音视频
qq_436962182 小时前
AI+BI工具全景指南:重构企业数据决策效能
人工智能·重构
sali-tec2 小时前
C# 基于halcon的视觉工作流-章48-短路断路
开发语言·图像处理·人工智能·算法·计算机视觉
cuicuiniu5212 小时前
浩辰CAD 看图王 推出「图小智AI客服」,重构设计服务新体验
人工智能·cad·cad看图·cad看图软件·cad看图王
SSO_Crown2 小时前
2025年HR 数字化转型:从工具应用到组织能力重构的深度变革
人工智能·重构