通过将信号频谱与噪声频谱进行比较,自动检测适当的带通滤波器转折频率研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

****🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️**座右铭:**行百里者,半于九十。

📋📋📋++本文目录如下:++🎁🎁🎁

目录

[💥1 概述](#💥1 概述)

[📚2 运行结果](#📚2 运行结果)

[🎉3 参考文献](#🎉3 参考文献)

[🌈4 Matlab代码实现](#🌈4 Matlab代码实现)


💥1 概述

cornerFreqs是一个用于自动检测适当的带通滤波器转折频率的算法。它通过将输入信号的频谱与噪声频谱进行比较来实现这一目标。这个算法的启发点和动机是地震波形的处理通常需要进行带通滤波,而滤波器转折频率的选择通常是一个手动且主观的过程。因此,需要一种自动检测转角频率的方法来处理大量的地震记录。

在这篇文章中,算法首先确定P相位到达时间,以获得背景噪声。这是通过确定事件开始的时间来实现的。接下来,算法计算噪声和信号的傅里叶幅谱。为了使这两个光谱更加平滑,使用了一个称为"平滑光谱"的函数进行处理。这个函数可以减少噪声对频谱的干扰,使得信号的特征更加明显。

最后,算法在低通和高通频率区域内搜索平滑频谱的交点,以确定用于带通滤波的适当转折频率。这样可以确保滤波器只通过特定的频率范围内的信号,而不会对其他频率的信号进行干扰。通过自动检测转角频率,这个算法可以有效地处理大量的地震记录,减少了人工干预的需求,并提高了处理效率。

总之,cornerFreqs算法通过比较信号和噪声的频谱,自动检测适当的带通滤波器转折频率。它的主要思想是通过确定背景噪声和信号的频谱,以及使用平滑光谱函数进行处理,来找到适合带通滤波的转折频率。这个算法在地震波形处理中具有重要的应用价值,可以提高处理效率并减少主观因素的干扰。

📚 2 运行结果

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]Kalkan, E. (2016). "An Automatic P-phase Arrival Time Picker", Bulletin of Seismological Society of America,106(3): 971-986, doi: 10.1785/0120150111

[2]陈磊.数字信号处理技术在噪声频谱分析仪中的应用[D].西安电子科技大学,2010.DOI:CNKI:CDMD:2.2010.082837.

🌈4 Matlab代码实现

相关推荐
一点媛艺1 小时前
Kotlin函数由易到难
开发语言·python·kotlin
姑苏风1 小时前
《Kotlin实战》-附录
android·开发语言·kotlin
奋斗的小花生2 小时前
c++ 多态性
开发语言·c++
魔道不误砍柴功2 小时前
Java 中如何巧妙应用 Function 让方法复用性更强
java·开发语言·python
闲晨2 小时前
C++ 继承:代码传承的魔法棒,开启奇幻编程之旅
java·c语言·开发语言·c++·经验分享
老猿讲编程2 小时前
一个例子来说明Ada语言的实时性支持
开发语言·ada
Chrikk3 小时前
Go-性能调优实战案例
开发语言·后端·golang
幼儿园老大*3 小时前
Go的环境搭建以及GoLand安装教程
开发语言·经验分享·后端·golang·go
canyuemanyue3 小时前
go语言连续监控事件并回调处理
开发语言·后端·golang
杜杜的man3 小时前
【go从零单排】go语言中的指针
开发语言·后端·golang