神经网络基础-神经网络补充概念-10-向量化

概念

向量化是一种优化技术,通过将循环操作替换为向量运算,以利用底层硬件的并行计算能力,从而提高代码的性能。在机器学习中,向量化可以显著加速训练过程,特别是在处理大规模数据集时。

代码实现

python 复制代码
import numpy as np

def sigmoid(z):
    return 1 / (1 + np.exp(-z))

def compute_loss(X, y, theta):
    m = len(y)
    h = sigmoid(X.dot(theta))
    loss = (-1/m) * np.sum(y * np.log(h) + (1 - y) * np.log(1 - h))
    return loss

def batch_gradient_descent(X, y, theta, learning_rate, num_iterations):
    m = len(y)
    losses = []
    
    for _ in range(num_iterations):
        h = sigmoid(X.dot(theta))
        gradient = X.T.dot(h - y) / m
        theta -= learning_rate * gradient
        
        loss = compute_loss(X, y, theta)
        losses.append(loss)
        
    return theta, losses

# 生成一些模拟数据
np.random.seed(42)
m = 100
n = 2
X = np.random.randn(m, n)
X = np.hstack((np.ones((m, 1)), X))
theta_true = np.array([1, 2, 3])
y = (X.dot(theta_true) + np.random.randn(m) * 0.2) > 0

# 初始化参数和超参数
theta = np.zeros(X.shape[1])
learning_rate = 0.01
num_iterations = 1000

# 执行批量梯度下降(向量化)
theta_optimized, losses = batch_gradient_descent(X, y, theta, learning_rate, num_iterations)

# 打印优化后的参数
print("优化后的参数:", theta_optimized)

# 绘制损失函数下降曲线
import matplotlib.pyplot as plt
plt.plot(losses)
plt.xlabel('迭代次数')
plt.ylabel('损失')
plt.title('损失函数下降曲线')
plt.show()
相关推荐
sali-tec几秒前
C# 基于halcon的视觉工作流-章42-手动识别文本
开发语言·人工智能·算法·计算机视觉·c#·ocr
mit6.8243 分钟前
[VoiceRAG] 前端实时通信 | useRealTime钩子
人工智能
B站_计算机毕业设计之家7 分钟前
机器学习实战项目:Python+Flask 汽车销量分析可视化系统(requests爬车主之家+可视化 源码+文档)✅
人工智能·python·机器学习·数据分析·flask·汽车·可视化
CV-杨帆27 分钟前
论文阅读:arxiv 2025 Scaling Laws for Differentially Private Language Models
论文阅读·人工智能·语言模型
羊羊小栈31 分钟前
基于「多模态大模型 + BGE向量检索增强RAG」的航空维修智能问答系统(vue+flask+AI算法)
vue.js·人工智能·python·语言模型·flask·毕业设计
viperrrrrrrrrr732 分钟前
GPT系列模型-详解
人工智能·gpt·llm
算家计算1 小时前
Wan2.2-Animate-14B 使用指南:从图片到动画的完整教程
人工智能·开源·aigc
西柚小萌新1 小时前
【深入浅出PyTorch】--4.PyTorch基础实战
人工智能·pytorch·python
渡我白衣1 小时前
深度学习入门(一)——从神经元到损失函数,一步步理解前向传播(下)
人工智能·深度学习·神经网络
算家计算2 小时前
快手新模型登顶开源编程模型榜首!超越Qwen3-Coder等模型
人工智能·开源·资讯