神经网络基础-神经网络补充概念-09-m个样本的梯度下降

概念

当应用梯度下降算法到具有 m 个训练样本的逻辑回归问题时,我们需要对每个样本计算梯度并进行平均,从而更新模型参数。这个过程通常称为批量梯度下降(Batch Gradient Descent)。

代码实现

python 复制代码
import numpy as np

def sigmoid(z):
    return 1 / (1 + np.exp(-z))

def compute_loss(X, y, theta):
    m = len(y)
    h = sigmoid(X.dot(theta))
    loss = (-1/m) * np.sum(y * np.log(h) + (1 - y) * np.log(1 - h))
    return loss

def batch_gradient_descent(X, y, theta, learning_rate, num_iterations):
    m = len(y)
    losses = []
    
    for _ in range(num_iterations):
        h = sigmoid(X.dot(theta))
        gradient = X.T.dot(h - y) / m
        theta -= learning_rate * gradient
        
        loss = compute_loss(X, y, theta)
        losses.append(loss)
        
    return theta, losses

# 生成一些模拟数据
np.random.seed(42)
m = 100
n = 2
X = np.random.randn(m, n)
X = np.hstack((np.ones((m, 1)), X))
theta_true = np.array([1, 2, 3])
y = (X.dot(theta_true) + np.random.randn(m) * 0.2) > 0

# 初始化参数和超参数
theta = np.zeros(X.shape[1])
learning_rate = 0.01
num_iterations = 1000

# 执行批量梯度下降
theta_optimized, losses = batch_gradient_descent(X, y, theta, learning_rate, num_iterations)

# 打印优化后的参数
print("优化后的参数:", theta_optimized)

# 绘制损失函数下降曲线
import matplotlib.pyplot as plt
plt.plot(losses)
plt.xlabel('迭代次数')
plt.ylabel('损失')
plt.title('损失函数下降曲线')
plt.show()

使用了 m 个训练样本,而不是一个。我们首先定义了 sigmoid 函数和计算损失的函数 compute_loss,然后实现了 batch_gradient_descent 函数来执行批量梯度下降。

相关推荐
老百姓懂点AI1 小时前
[WASM实战] 插件系统的安全性:智能体来了(西南总部)AI调度官的WebAssembly沙箱与AI agent指挥官的动态加载
人工智能·wasm
人工智能训练7 小时前
【极速部署】Ubuntu24.04+CUDA13.0 玩转 VLLM 0.15.0:预编译 Wheel 包 GPU 版安装全攻略
运维·前端·人工智能·python·ai编程·cuda·vllm
源于花海8 小时前
迁移学习相关的期刊和会议
人工智能·机器学习·迁移学习·期刊会议
DisonTangor9 小时前
DeepSeek-OCR 2: 视觉因果流
人工智能·开源·aigc·ocr·deepseek
薛定谔的猫19829 小时前
二十一、基于 Hugging Face Transformers 实现中文情感分析情感分析
人工智能·自然语言处理·大模型 训练 调优
发哥来了10 小时前
《AI视频生成技术原理剖析及金管道·图生视频的应用实践》
人工智能
数智联AI团队10 小时前
AI搜索引领开源大模型新浪潮,技术创新重塑信息检索未来格局
人工智能·开源
不懒不懒10 小时前
【线性 VS 逻辑回归:一篇讲透两种核心回归模型】
人工智能·机器学习
冰西瓜60010 小时前
从项目入手机器学习——(四)特征工程(简单特征探索)
人工智能·机器学习
Ryan老房10 小时前
未来已来-AI标注工具的下一个10年
人工智能·yolo·目标检测·ai