神经网络基础-神经网络补充概念-09-m个样本的梯度下降

概念

当应用梯度下降算法到具有 m 个训练样本的逻辑回归问题时,我们需要对每个样本计算梯度并进行平均,从而更新模型参数。这个过程通常称为批量梯度下降(Batch Gradient Descent)。

代码实现

python 复制代码
import numpy as np

def sigmoid(z):
    return 1 / (1 + np.exp(-z))

def compute_loss(X, y, theta):
    m = len(y)
    h = sigmoid(X.dot(theta))
    loss = (-1/m) * np.sum(y * np.log(h) + (1 - y) * np.log(1 - h))
    return loss

def batch_gradient_descent(X, y, theta, learning_rate, num_iterations):
    m = len(y)
    losses = []
    
    for _ in range(num_iterations):
        h = sigmoid(X.dot(theta))
        gradient = X.T.dot(h - y) / m
        theta -= learning_rate * gradient
        
        loss = compute_loss(X, y, theta)
        losses.append(loss)
        
    return theta, losses

# 生成一些模拟数据
np.random.seed(42)
m = 100
n = 2
X = np.random.randn(m, n)
X = np.hstack((np.ones((m, 1)), X))
theta_true = np.array([1, 2, 3])
y = (X.dot(theta_true) + np.random.randn(m) * 0.2) > 0

# 初始化参数和超参数
theta = np.zeros(X.shape[1])
learning_rate = 0.01
num_iterations = 1000

# 执行批量梯度下降
theta_optimized, losses = batch_gradient_descent(X, y, theta, learning_rate, num_iterations)

# 打印优化后的参数
print("优化后的参数:", theta_optimized)

# 绘制损失函数下降曲线
import matplotlib.pyplot as plt
plt.plot(losses)
plt.xlabel('迭代次数')
plt.ylabel('损失')
plt.title('损失函数下降曲线')
plt.show()

使用了 m 个训练样本,而不是一个。我们首先定义了 sigmoid 函数和计算损失的函数 compute_loss,然后实现了 batch_gradient_descent 函数来执行批量梯度下降。

相关推荐
WeiJingYu.21 小时前
O3.1 opencv高阶
人工智能·opencv·计算机视觉
研梦非凡21 小时前
ICCV 2025|基于曲线感知高斯溅射的3D参数曲线重建
人工智能·算法·3d
Hello123网站1 天前
探迹SalesGPT
人工智能·ai工具
摘星星的屋顶1 天前
论文阅读记录之《VelocityGPT 》
论文阅读·人工智能·深度学习·学习
格林威1 天前
工业相机如何通过光度立体成像技术实现高效精准的2.5D缺陷检测
人工智能·深度学习·数码相机·yolo·计算机视觉
MarkHD1 天前
大语言模型入门指南:从原理到实践应用
人工智能·语言模型·自然语言处理
A尘埃1 天前
NLP(自然语言处理, Natural Language Processing)
人工智能·自然语言处理·nlp
dlraba8021 天前
机器学习实战(二):Pandas 特征工程与模型协同进阶
人工智能·机器学习·pandas
一碗白开水一1 天前
【第19话:定位建图】SLAM点云配准之3D-3D ICP(Iterative Closest Point)方法详解
人工智能·算法
mit6.8241 天前
[rStar] 策略与奖励大语言模型
人工智能·语言模型