神经网络基础-神经网络补充概念-20-激活函数

概念

激活函数是神经网络中的一个重要组成部分,它引入了非线性性质,使得神经网络可以学习和表示更复杂的函数关系。激活函数对于将输入信号转换为输出信号起到了关键作用,它在神经元的计算过程中引入了非线性变换。

几种常见的激活函数及其特点

Sigmoid函数:

Sigmoid 函数将输入映射到一个 0 到 1 的范围,它的公式是:f(x) = 1 / (1 + exp(-x))。

特点:Sigmoid 函数在输入很大或很小时,输出接近于0或1,适合用于输出层进行二分类问题的概率估计。但它在远离零点时梯度接近于零,可能导致梯度消失问题。

ReLU函数(Rectified Linear Unit):

ReLU 函数将负数输入变为零,非负数输入保持不变,它的公式是:f(x) = max(0, x)。

特点:ReLU 对于正数输入有很强的激活作用,能够缓解梯度消失问题。但存在一个问题,即在训练过程中可能出现"神经元死亡"现象,即某些神经元永远不会被激活。

Leaky ReLU函数:

Leaky ReLU 是对 ReLU 的改进,它在负数区域引入一个小的斜率,公式是:f(x) = x (x > 0),f(x) = ax (x <= 0),其中 a 是一个小于 1 的常数。

特点:Leaky ReLU 克服了 ReLU 的神经元死亡问题,但仍然能够引入一些非线性。

Tanh函数(双曲正切函数):

Tanh 函数将输入映射到 -1 到 1 的范围,公式是:f(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))。

特点:Tanh 函数可以将输入的负值映射到负区间,适合用于隐藏层中。但仍然存在梯度消失问题。

Softmax函数:

Softmax 函数将一组实数映射到概率分布,用于多分类问题。它的公式是:f(x_i) = exp(x_i) / sum(exp(x_j)),其中 i 表示第 i 个类别。

特点:Softmax 函数用于多分类输出,将神经网络的输出转换为概率分布。

代码实现

python 复制代码
import numpy as np

def sigmoid(x):
    return 1 / (1 + np.exp(-x))
python 复制代码
import numpy as np

def relu(x):
    return np.maximum(0, x)
python 复制代码
import numpy as np

def leaky_relu(x, alpha=0.01):
    return np.where(x > 0, x, alpha * x)
python 复制代码
import numpy as np

def tanh(x):
    return np.tanh(x)
python 复制代码
import numpy as np

def softmax(x):
    exp_x = np.exp(x - np.max(x, axis=-1, keepdims=True))
    return exp_x / np.sum(exp_x, axis=-1, keepdims=True)
相关推荐
杨小扩5 小时前
第4章:实战项目一 打造你的第一个AI知识库问答机器人 (RAG)
人工智能·机器人
whaosoft-1435 小时前
51c~目标检测~合集4
人工智能
雪兽软件5 小时前
2025 年网络安全与人工智能发展趋势
人工智能·安全·web安全
元宇宙时间6 小时前
全球发展币GDEV:从中国出发,走向全球的数字发展合作蓝图
大数据·人工智能·去中心化·区块链
小黄人20257 小时前
自动驾驶安全技术的演进与NVIDIA的创新实践
人工智能·安全·自动驾驶
ZStack开发者社区8 小时前
首批 | 云轴科技ZStack加入施耐德电气技术本地化创新生态
人工智能·科技·云计算
X Y O8 小时前
神经网络初步学习3——数据与损失
人工智能·神经网络·学习
FL16238631299 小时前
如何使用目标检测深度学习框架yolov8训练钢管管道表面缺陷VOC+YOLO格式1159张3类别的检测数据集步骤和流程
深度学习·yolo·目标检测
唯创知音9 小时前
玩具语音方案选型决策OTP vs Flash 的成本功耗与灵活性
人工智能·语音识别
Jamence9 小时前
多模态大语言模型arxiv论文略读(151)
论文阅读·人工智能·语言模型·自然语言处理·论文笔记