Automatically Correcting Large Language Models

本文是大模型相关领域的系列文章,针对《Automatically Correcting Large Language Models: Surveying the landscape of diverse self-correction strategies》的翻译。

自动更正大型语言模型:综述各种自我更正策略的前景

  • 摘要
  • [1 引言](#1 引言)
  • [2 自动反馈校正LLM的分类](#2 自动反馈校正LLM的分类)
  • [3 训练时间校正](#3 训练时间校正)
  • [4 生成时间校正](#4 生成时间校正)
  • [5 事后校正](#5 事后校正)
  • [6 应用](#6 应用)
  • [7 研究差距与未来方向](#7 研究差距与未来方向)
  • [8 结论](#8 结论)

摘要

大型语言模型(LLM)在一系列NLP任务中表现出了卓越的性能。然而,它们的功效被不受欢迎和不一致的行为所破坏,包括幻觉、不忠实的推理和有毒内容。纠正这些缺陷的一种很有前途的方法是自我纠正,即LLM本身被提示或引导解决其输出中的问题。利用由LLM本身或某些外部系统产生的自动反馈的技术特别令人感兴趣,因为它们是一种很有前途的方法,可以使基于LLM的解决方案更加实用和可部署,只需最少的人工反馈。本文对这类新兴技术进行了全面的综述。我们利用这些策略对最近的一系列工作进行了分析和分类,包括训练时间、生成时间和事后纠正。我们还总结了这一战略的主要应用,最后讨论了未来的方向和挑战。

1 引言

2 自动反馈校正LLM的分类

2.1

2.2

2.3

2.4

2.5

2.6

2.7

3 训练时间校正

4 生成时间校正

5 事后校正

6 应用

7 研究差距与未来方向

8 结论

在本文中,我们对具有自动反馈的自校正大型语言模型进行了全面的综述。我们对各种自我纠正策略进行了广泛的分类和分析,包括训练时间、生成时间和事后纠正。我们还讨论了自我纠正的主要应用领域,包括纠正事实错误、增强推理能力和改进代码生成等。最后,我们概述了该领域的一些潜在未来方向和相关挑战。我们撰写这篇论文的目的是为对这个快速发展的领域感兴趣的读者提供一个全面而有用的资源。为了帮助这项工作,我们在GitHub存储库中创建了一个不断更新的阅读列表:https://github.com/teacherpeterpan/self-correction-llm-papers.

相关推荐
杀生丸学AI几秒前
【物理重建】PPISP :辐射场重建中光度变化的物理合理补偿与控制
人工智能·大模型·aigc·三维重建·世界模型·逆渲染
vlln3 分钟前
【论文速读】递归语言模型 (Recursive Language Models): 将上下文作为环境的推理范式
人工智能·语言模型·自然语言处理
春日见11 分钟前
如何避免代码冲突,拉取分支
linux·人工智能·算法·机器学习·自动驾驶
龙腾AI白云15 分钟前
基于Transformer的人工智能模型搭建与fine-tuning
人工智能·数据挖掘
人工智能培训40 分钟前
大模型训练数据版权与知识产权问题的解决路径
人工智能·大模型·数字化转型·大模型算法·大模型应用工程师
无垠的广袤1 小时前
【VisionFive 2 Lite 单板计算机】边缘AI视觉应用部署:缺陷检测
linux·人工智能·python·opencv·开发板
Duang007_1 小时前
【LeetCodeHot100 超详细Agent启发版本】字母异位词分组 (Group Anagrams)
开发语言·javascript·人工智能·python
phoenix@Capricornus1 小时前
CNN中卷积输出尺寸的计算
人工智能·神经网络·cnn
创客匠人老蒋1 小时前
从数据库到智能体:教育企业如何构建自己的“数字大脑”?
大数据·人工智能·创客匠人
GJGCY1 小时前
技术解析|中国智能体4类路径深度拆解,这类底座架构优势凸显
人工智能·经验分享·ai·agent·智能体·数字员工