Automatically Correcting Large Language Models

本文是大模型相关领域的系列文章,针对《Automatically Correcting Large Language Models: Surveying the landscape of diverse self-correction strategies》的翻译。

自动更正大型语言模型:综述各种自我更正策略的前景

  • 摘要
  • [1 引言](#1 引言)
  • [2 自动反馈校正LLM的分类](#2 自动反馈校正LLM的分类)
  • [3 训练时间校正](#3 训练时间校正)
  • [4 生成时间校正](#4 生成时间校正)
  • [5 事后校正](#5 事后校正)
  • [6 应用](#6 应用)
  • [7 研究差距与未来方向](#7 研究差距与未来方向)
  • [8 结论](#8 结论)

摘要

大型语言模型(LLM)在一系列NLP任务中表现出了卓越的性能。然而,它们的功效被不受欢迎和不一致的行为所破坏,包括幻觉、不忠实的推理和有毒内容。纠正这些缺陷的一种很有前途的方法是自我纠正,即LLM本身被提示或引导解决其输出中的问题。利用由LLM本身或某些外部系统产生的自动反馈的技术特别令人感兴趣,因为它们是一种很有前途的方法,可以使基于LLM的解决方案更加实用和可部署,只需最少的人工反馈。本文对这类新兴技术进行了全面的综述。我们利用这些策略对最近的一系列工作进行了分析和分类,包括训练时间、生成时间和事后纠正。我们还总结了这一战略的主要应用,最后讨论了未来的方向和挑战。

1 引言

2 自动反馈校正LLM的分类

2.1

2.2

2.3

2.4

2.5

2.6

2.7

3 训练时间校正

4 生成时间校正

5 事后校正

6 应用

7 研究差距与未来方向

8 结论

在本文中,我们对具有自动反馈的自校正大型语言模型进行了全面的综述。我们对各种自我纠正策略进行了广泛的分类和分析,包括训练时间、生成时间和事后纠正。我们还讨论了自我纠正的主要应用领域,包括纠正事实错误、增强推理能力和改进代码生成等。最后,我们概述了该领域的一些潜在未来方向和相关挑战。我们撰写这篇论文的目的是为对这个快速发展的领域感兴趣的读者提供一个全面而有用的资源。为了帮助这项工作,我们在GitHub存储库中创建了一个不断更新的阅读列表:https://github.com/teacherpeterpan/self-correction-llm-papers.

相关推荐
白雪讲堂7 分钟前
AI搜索品牌曝光资料包(精准适配文心一言/Kimi/DeepSeek等场景)
大数据·人工智能·搜索引擎·ai·文心一言·deepseek
斯汤雷13 分钟前
Matlab绘图案例,设置图片大小,坐标轴比例为黄金比
数据库·人工智能·算法·matlab·信息可视化
ejinxian19 分钟前
Spring AI Alibaba 快速开发生成式 Java AI 应用
java·人工智能·spring
葡萄成熟时_23 分钟前
【第十三届“泰迪杯”数据挖掘挑战赛】【2025泰迪杯】【代码篇】A题解题全流程(持续更新)
人工智能·数据挖掘
机器之心37 分钟前
一篇论文,看见百度广告推荐系统在大模型时代的革新
人工智能
机器之心41 分钟前
视觉SSL终于追上了CLIP!Yann LeCun、谢赛宁等新作,逆转VQA任务固有认知
人工智能
赣州云智科技的技术铺子1 小时前
【一步步开发AI运动APP】六、运动计时计数能调用
人工智能·程序员
东临碣石821 小时前
【AI论文】什么、如何、何处以及效果如何?大语言模型测试时缩放技术调研
人工智能