Automatically Correcting Large Language Models

本文是大模型相关领域的系列文章,针对《Automatically Correcting Large Language Models: Surveying the landscape of diverse self-correction strategies》的翻译。

自动更正大型语言模型:综述各种自我更正策略的前景

  • 摘要
  • [1 引言](#1 引言)
  • [2 自动反馈校正LLM的分类](#2 自动反馈校正LLM的分类)
  • [3 训练时间校正](#3 训练时间校正)
  • [4 生成时间校正](#4 生成时间校正)
  • [5 事后校正](#5 事后校正)
  • [6 应用](#6 应用)
  • [7 研究差距与未来方向](#7 研究差距与未来方向)
  • [8 结论](#8 结论)

摘要

大型语言模型(LLM)在一系列NLP任务中表现出了卓越的性能。然而,它们的功效被不受欢迎和不一致的行为所破坏,包括幻觉、不忠实的推理和有毒内容。纠正这些缺陷的一种很有前途的方法是自我纠正,即LLM本身被提示或引导解决其输出中的问题。利用由LLM本身或某些外部系统产生的自动反馈的技术特别令人感兴趣,因为它们是一种很有前途的方法,可以使基于LLM的解决方案更加实用和可部署,只需最少的人工反馈。本文对这类新兴技术进行了全面的综述。我们利用这些策略对最近的一系列工作进行了分析和分类,包括训练时间、生成时间和事后纠正。我们还总结了这一战略的主要应用,最后讨论了未来的方向和挑战。

1 引言

2 自动反馈校正LLM的分类

2.1

2.2

2.3

2.4

2.5

2.6

2.7

3 训练时间校正

4 生成时间校正

5 事后校正

6 应用

7 研究差距与未来方向

8 结论

在本文中,我们对具有自动反馈的自校正大型语言模型进行了全面的综述。我们对各种自我纠正策略进行了广泛的分类和分析,包括训练时间、生成时间和事后纠正。我们还讨论了自我纠正的主要应用领域,包括纠正事实错误、增强推理能力和改进代码生成等。最后,我们概述了该领域的一些潜在未来方向和相关挑战。我们撰写这篇论文的目的是为对这个快速发展的领域感兴趣的读者提供一个全面而有用的资源。为了帮助这项工作,我们在GitHub存储库中创建了一个不断更新的阅读列表:https://github.com/teacherpeterpan/self-correction-llm-papers.

相关推荐
星爷AG I1 天前
9-18 视觉预期(AGI基础理论)
人工智能·agi
轻览月1 天前
【DL】复杂卷积神经网络Ⅱ
人工智能·神经网络·cnn
2501_936146041 天前
YOLOv26鱼类目标检测与识别实现
人工智能·yolo·目标检测
AI 菌1 天前
DeepSeek-OCR v2 解读
人工智能·大模型·ocr·多模态
朴实赋能1 天前
2026年运营革命:新型AI驱动跨境电商矩阵解决方案
人工智能
lywybo1 天前
【开源】赛博报社技术剖析:如何零成本使用AI大模型
人工智能·开源
迈火1 天前
Facerestore CF (Code Former):ComfyUI人脸修复的卓越解决方案
人工智能·gpt·计算机视觉·stable diffusion·aigc·语音识别·midjourney
qwy7152292581631 天前
7-获取局部图像
人工智能·opencv·计算机视觉
70asunflower1 天前
Zotero论文阅读标记颜色框架
人工智能·学习·考研
云草桑1 天前
.net AI开发05 第九章 新增 RAG 文档处理后台服务 RagWorker 及核心流程
人工智能·ai·.net·rag·qdrant