Automatically Correcting Large Language Models

本文是大模型相关领域的系列文章,针对《Automatically Correcting Large Language Models: Surveying the landscape of diverse self-correction strategies》的翻译。

自动更正大型语言模型:综述各种自我更正策略的前景

  • 摘要
  • [1 引言](#1 引言)
  • [2 自动反馈校正LLM的分类](#2 自动反馈校正LLM的分类)
  • [3 训练时间校正](#3 训练时间校正)
  • [4 生成时间校正](#4 生成时间校正)
  • [5 事后校正](#5 事后校正)
  • [6 应用](#6 应用)
  • [7 研究差距与未来方向](#7 研究差距与未来方向)
  • [8 结论](#8 结论)

摘要

大型语言模型(LLM)在一系列NLP任务中表现出了卓越的性能。然而,它们的功效被不受欢迎和不一致的行为所破坏,包括幻觉、不忠实的推理和有毒内容。纠正这些缺陷的一种很有前途的方法是自我纠正,即LLM本身被提示或引导解决其输出中的问题。利用由LLM本身或某些外部系统产生的自动反馈的技术特别令人感兴趣,因为它们是一种很有前途的方法,可以使基于LLM的解决方案更加实用和可部署,只需最少的人工反馈。本文对这类新兴技术进行了全面的综述。我们利用这些策略对最近的一系列工作进行了分析和分类,包括训练时间、生成时间和事后纠正。我们还总结了这一战略的主要应用,最后讨论了未来的方向和挑战。

1 引言

2 自动反馈校正LLM的分类

2.1

2.2

2.3

2.4

2.5

2.6

2.7

3 训练时间校正

4 生成时间校正

5 事后校正

6 应用

7 研究差距与未来方向

8 结论

在本文中,我们对具有自动反馈的自校正大型语言模型进行了全面的综述。我们对各种自我纠正策略进行了广泛的分类和分析,包括训练时间、生成时间和事后纠正。我们还讨论了自我纠正的主要应用领域,包括纠正事实错误、增强推理能力和改进代码生成等。最后,我们概述了该领域的一些潜在未来方向和相关挑战。我们撰写这篇论文的目的是为对这个快速发展的领域感兴趣的读者提供一个全面而有用的资源。为了帮助这项工作,我们在GitHub存储库中创建了一个不断更新的阅读列表:https://github.com/teacherpeterpan/self-correction-llm-papers.

相关推荐
IT_陈寒3 小时前
React 18实战:7个被低估的Hooks技巧让你的开发效率提升50%
前端·人工智能·后端
逛逛GitHub4 小时前
飞书多维表“独立”了!功能强大的超出想象。
人工智能·github·产品
机器之心4 小时前
刚刚,DeepSeek-R1论文登上Nature封面,通讯作者梁文锋
人工智能·openai
aneasystone本尊6 小时前
学习 Chat2Graph 的知识库服务
人工智能
IT_陈寒7 小时前
Redis 性能翻倍的 7 个冷门技巧,第 5 个大多数人都不知道!
前端·人工智能·后端
飞哥数智坊17 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三17 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯18 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet20 小时前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算20 小时前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源