神经网络基础-神经网络补充概念-18-多个样本的向量化

概念

多个样本的向量化通常涉及将一组样本数据组织成矩阵形式,其中每一行代表一个样本,每一列代表样本的特征。这种向量化可以使你更有效地处理和操作多个样本,特别是在机器学习和数据分析中。

代码实现

python 复制代码
import numpy as np

# 多个样本的数据
samples = np.array([[1, 2, 3],
                    [4, 5, 6],
                    [7, 8, 9]])

# 向量化为矩阵
matrix = samples

print("原始样本数据:")
print(samples)

print("\n向量化后的矩阵:")
print(matrix)
相关推荐
苏苏susuus42 分钟前
机器学习:load_predict_project
人工智能·机器学习
科技小E43 分钟前
打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用
人工智能·安全·智能手机
猿饵块2 小时前
视觉slam--框架
人工智能
yvestine3 小时前
自然语言处理——Transformer
人工智能·深度学习·自然语言处理·transformer
SuperW3 小时前
OPENCV图形计算面积、弧长API讲解(1)
人工智能·opencv·计算机视觉
山海不说话4 小时前
视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
人工智能·python·计算机视觉·视觉检测
虹科数字化与AR5 小时前
安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)
人工智能·ar·ar眼镜·船舶智造·数字工作流·智能装配
飞哥数智坊6 小时前
Coze实战第13讲:飞书多维表格读取+豆包生图模型,轻松批量生成短剧封面
人工智能
newxtc6 小时前
【配置 YOLOX 用于按目录分类的图片数据集】
人工智能·目标跟踪·分类