神经网络基础-神经网络补充概念-18-多个样本的向量化

概念

多个样本的向量化通常涉及将一组样本数据组织成矩阵形式,其中每一行代表一个样本,每一列代表样本的特征。这种向量化可以使你更有效地处理和操作多个样本,特别是在机器学习和数据分析中。

代码实现

python 复制代码
import numpy as np

# 多个样本的数据
samples = np.array([[1, 2, 3],
                    [4, 5, 6],
                    [7, 8, 9]])

# 向量化为矩阵
matrix = samples

print("原始样本数据:")
print(samples)

print("\n向量化后的矩阵:")
print(matrix)
相关推荐
zy_destiny9 分钟前
【工业场景】用YOLOv26实现桥梁检测
人工智能·深度学习·yolo·机器学习·计算机视觉·目标跟踪
2501_9418372612 分钟前
蘑菇可食用性分类识别_YOLO11分割模型实现与优化_1
人工智能·数据挖掘
2501_9418372612 分钟前
基于YOLO11-Aux改进的圣女果目标检测实现
人工智能·目标检测·计算机视觉
莫有杯子的龙潭峡谷20 分钟前
在 Windows 系统上安装 OpenClaw
人工智能·node.js·安装教程·openclaw
Funny_AI_LAB22 分钟前
AI Agent最新重磅综述:迈向高效智能体,记忆、工具学习和规划综述
人工智能·学习·算法·语言模型·agi
zhangshuang-peta35 分钟前
超越Composio:ContextForge与Peta作为集成平台的替代方案
人工智能·ai agent·mcp·peta
power 雀儿37 分钟前
Transformer输入嵌入与绝对位置编码
人工智能·深度学习·transformer
X54先生(人文科技)38 分钟前
元创力开源项目介绍
人工智能·架构·零知识证明
(; ̄ェ ̄)。38 分钟前
机器学习入门(十八)特征降维
人工智能·机器学习
pp起床41 分钟前
Gen_AI 第三课 大模型内部原理
人工智能