神经网络基础-神经网络补充概念-18-多个样本的向量化

概念

多个样本的向量化通常涉及将一组样本数据组织成矩阵形式,其中每一行代表一个样本,每一列代表样本的特征。这种向量化可以使你更有效地处理和操作多个样本,特别是在机器学习和数据分析中。

代码实现

python 复制代码
import numpy as np

# 多个样本的数据
samples = np.array([[1, 2, 3],
                    [4, 5, 6],
                    [7, 8, 9]])

# 向量化为矩阵
matrix = samples

print("原始样本数据:")
print(samples)

print("\n向量化后的矩阵:")
print(matrix)
相关推荐
学历真的很重要12 分钟前
LangChain V1.0 Context Engineering(上下文工程)详细指南
人工智能·后端·学习·语言模型·面试·职场和发展·langchain
IT=>小脑虎12 分钟前
Python零基础衔接进阶知识点【详解版】
开发语言·人工智能·python
UnderTurrets20 分钟前
A_Survey_on_3D_object_Affordance
pytorch·深度学习·计算机视觉·3d
koo36423 分钟前
pytorch深度学习笔记13
pytorch·笔记·深度学习
黄焖鸡能干四碗23 分钟前
智能制造工业大数据应用及探索方案(PPT文件)
大数据·运维·人工智能·制造·需求分析
高洁0125 分钟前
CLIP 的双编码器架构是如何优化图文关联的?(3)
深度学习·算法·机器学习·transformer·知识图谱
世岩清上30 分钟前
乡村振兴主题展厅本土化材料运用与地域文化施工表达
大数据·人工智能·乡村振兴·展厅
工藤学编程1 小时前
零基础学AI大模型之LangChain智能体执行引擎AgentExecutor
人工智能·langchain
图生生1 小时前
基于AI的商品场景图批量生成方案,助力电商大促效率翻倍
人工智能·ai
说私域1 小时前
短视频私域流量池的变现路径创新:基于AI智能名片链动2+1模式S2B2C商城小程序的实践研究
大数据·人工智能·小程序