一个概率论例题引发的思考

浙江大学版《概率论与数理统计》一书,第13章第1节例2:

这个解释和模型比较简单易懂。

接下来,第13章第2节的例2也跟此模型相关:

在我自己的理解中,此题的解法跟上一个题目一样,其概率如下面的二维矩阵,第二级传输也就是n为2,矩阵一共有4中可能的概率,求其期望值,即求所有概率及值之积的和。

{ p n q n q n p n } \begin {Bmatrix} p^n & q^n \\ q^n & p^n \end{Bmatrix} {pnqnqnpn}

然而,仔细考虑之后发现不妥。因为最后结果的概率,这样计算不太合适,但是又没有发现更合理的理论和方法。

继续搜看教材,看到这一节的如下论述:

似乎抓到了什么,但是又特别模糊。

再看一下C-K方程:

因此,参考此文:https://blog.csdn.net/m0_37567738/article/details/132182007?spm=1001.2014.3001.5502可以得出结论,此种题目的解题方法还是要回到马尔可夫概率转移矩阵中去找答案。

我觉得要理解此题目的底层逻辑,还需要了解以下公式:

P { X n = a n } = ∑ i = 1 + ∞ P { X n = a n , X 0 = a i } = ∑ i = 1 + ∞ P { X n = a n ∣ X 0 = a i } P { X 0 = a i } = ∑ i = 1 + ∞ P i ( 0 ) P i j ( n ) = ∑ i = 1 + ∞ P i 1 ( 1 ) P i j ( n − 1 ) = ∑ i = 1 + ∞ P 2 i ( 2 ) P i j ( n − 2 ) = ∑ i = 1 + ∞ P 3 i ( 3 ) P i j ( n − 3 ) = . . . . . . P \{X_n = a_n\} = \sum_{i = 1}^{+\infty} P\{ X_n = a_n, X_0 = a_i \} = \\ \sum_{i = 1}^{+\infty} P\{ X_n = a_n|X_0 = a_i \} P\{ X_0 = a_i \}=\sum_{i=1}^{+\infty} P_i(0) P_{ij}(n) = \\ \sum_{i=1}^{+\infty} P_{i1}(1) P_{ij}(n-1)= \sum_{i=1}^{+\infty} P_{2i}(2) P_{ij}(n-2) = \sum_{i=1}^{+\infty} P_{3i}(3) P_{ij}(n-3) = ...... \\ P{Xn=an}=i=1∑+∞P{Xn=an,X0=ai}=i=1∑+∞P{Xn=an∣X0=ai}P{X0=ai}=i=1∑+∞Pi(0)Pij(n)=i=1∑+∞Pi1(1)Pij(n−1)=i=1∑+∞P2i(2)Pij(n−2)=i=1∑+∞P3i(3)Pij(n−3)=......

这个逻辑的本质区别就在于,它是利用后验概率去推算先验概率,这是一种理论上的优越性。

我们想要求解的概率P,它依赖于其概率矩阵的乘法运算,而不是矩阵中4个转换概率的期望值。

相关推荐
lbb 小魔仙2 小时前
面向 NPU 的高性能矩阵乘法:CANN ops-nn 算子库架构与优化技术
线性代数·矩阵·架构
劈星斩月4 小时前
线性代数-3Blue1Brown《线性代数的本质》特征向量与特征值(12)
线性代数·特征值·特征向量·特征方程
池央6 小时前
ops-nn 算子库中的数据布局与混合精度策略:卷积、矩阵乘法与 RNN 的优化实践
rnn·线性代数·矩阵
深鱼~8 小时前
大模型底层算力支撑:ops-math在矩阵乘法上的优化
人工智能·线性代数·矩阵·cann
Zfox_8 小时前
CANN PyPTO 编程范式深度解析:并行张量与 Tile 分块操作的架构原理、内存控制与流水线调度机制
线性代数·矩阵·架构
TechWJ8 小时前
catlass深度解析:Ascend平台的高性能矩阵运算模板库
线性代数·矩阵·ascend·cann·catlass
deep_drink1 天前
【基础知识一】线性代数的核心:从矩阵变换到 SVD 终极奥义
线性代数·机器学习·矩阵
数智工坊1 天前
【数据结构-特殊矩阵】3.5 特殊矩阵-压缩存储
数据结构·线性代数·矩阵
AI科技星1 天前
张祥前统一场论核心场方程的经典验证-基于电子与质子的求导溯源及力的精确计算
线性代数·算法·机器学习·矩阵·概率论
deep_drink1 天前
【基础知识二】彻底读懂拉普拉斯矩阵 (Laplacian)
人工智能·深度学习·线性代数·矩阵