一个概率论例题引发的思考

浙江大学版《概率论与数理统计》一书,第13章第1节例2:

这个解释和模型比较简单易懂。

接下来,第13章第2节的例2也跟此模型相关:

在我自己的理解中,此题的解法跟上一个题目一样,其概率如下面的二维矩阵,第二级传输也就是n为2,矩阵一共有4中可能的概率,求其期望值,即求所有概率及值之积的和。

{ p n q n q n p n } \begin {Bmatrix} p^n & q^n \\ q^n & p^n \end{Bmatrix} {pnqnqnpn}

然而,仔细考虑之后发现不妥。因为最后结果的概率,这样计算不太合适,但是又没有发现更合理的理论和方法。

继续搜看教材,看到这一节的如下论述:

似乎抓到了什么,但是又特别模糊。

再看一下C-K方程:

因此,参考此文:https://blog.csdn.net/m0_37567738/article/details/132182007?spm=1001.2014.3001.5502可以得出结论,此种题目的解题方法还是要回到马尔可夫概率转移矩阵中去找答案。

我觉得要理解此题目的底层逻辑,还需要了解以下公式:

P { X n = a n } = ∑ i = 1 + ∞ P { X n = a n , X 0 = a i } = ∑ i = 1 + ∞ P { X n = a n ∣ X 0 = a i } P { X 0 = a i } = ∑ i = 1 + ∞ P i ( 0 ) P i j ( n ) = ∑ i = 1 + ∞ P i 1 ( 1 ) P i j ( n − 1 ) = ∑ i = 1 + ∞ P 2 i ( 2 ) P i j ( n − 2 ) = ∑ i = 1 + ∞ P 3 i ( 3 ) P i j ( n − 3 ) = . . . . . . P \{X_n = a_n\} = \sum_{i = 1}^{+\infty} P\{ X_n = a_n, X_0 = a_i \} = \\ \sum_{i = 1}^{+\infty} P\{ X_n = a_n|X_0 = a_i \} P\{ X_0 = a_i \}=\sum_{i=1}^{+\infty} P_i(0) P_{ij}(n) = \\ \sum_{i=1}^{+\infty} P_{i1}(1) P_{ij}(n-1)= \sum_{i=1}^{+\infty} P_{2i}(2) P_{ij}(n-2) = \sum_{i=1}^{+\infty} P_{3i}(3) P_{ij}(n-3) = ...... \\ P{Xn=an}=i=1∑+∞P{Xn=an,X0=ai}=i=1∑+∞P{Xn=an∣X0=ai}P{X0=ai}=i=1∑+∞Pi(0)Pij(n)=i=1∑+∞Pi1(1)Pij(n−1)=i=1∑+∞P2i(2)Pij(n−2)=i=1∑+∞P3i(3)Pij(n−3)=......

这个逻辑的本质区别就在于,它是利用后验概率去推算先验概率,这是一种理论上的优越性。

我们想要求解的概率P,它依赖于其概率矩阵的乘法运算,而不是矩阵中4个转换概率的期望值。

相关推荐
ChoSeitaku1 天前
线代强化NO19|矩阵的相似与相似对角化
python·线性代数·矩阵
ChoSeitaku1 天前
线代强化NO18|矩阵的相似与相似对角化|概念|性质|判定|矩阵相似
线性代数·矩阵
Hcoco_me1 天前
大模型面试题3:如何计算exp(A) ,其中A为一个矩阵。
线性代数·矩阵
passxgx2 天前
11.1 高斯消元法的应用
线性代数·矩阵
在路上看风景3 天前
2.2 列空间和零空间
线性代数
艾莉丝努力练剑3 天前
【优选算法必刷100题】第031~32题(前缀和算法):连续数组、矩阵区域和
大数据·人工智能·线性代数·算法·矩阵·二维前缀和
Beginner x_u3 天前
线性代数 必背公式总结&&线代计算技巧总结_分块矩阵大总结_秩一矩阵大总结
线性代数·矩阵·特征值·特征向量·计算技巧
培风图南以星河揽胜3 天前
Java实习模拟面试|离散数学|概率论|金融英语|数据库实战|职业规划|期末冲刺|今日本科计科要闻速递:技术分享与学习指南
java·面试·概率论
没书读了3 天前
计算机组成原理-考前记忆清单
线性代数·算法
oscar9993 天前
高等数学第四章 向量代数与空间解析几何
线性代数·矩阵