数据生成 | MATLAB实现WGAN生成对抗网络数据生成

数据生成 | MATLAB实现WGAN生成对抗网络数据生成

目录

生成效果

基本描述

1.WGAN生成对抗网络,数据生成,样本生成程序,MATLAB程序;

2.适用于MATLAB 2020版及以上版本;

3.基于Wasserstein生成对抗网络(Wasserstein Generative Adversarial Network,WGAN)的数据生成模型引入了梯度惩罚(Gradient Penalty)来改善训练的稳定性和生成样本的质量。WGAN旨在解决原始生成对抗网络(GAN)中的训练不稳定性和模式崩溃等问题。基于Wasserstein生成对抗网络梯度惩罚的数据生成模型在一些应用中表现出较好的性能和稳定性,帮助解决了传统GAN中的一些问题,如模式崩溃和训练不稳定等。它已经被广泛应用于图像生成、数据合成等领域。;

4.数据扩充:对于数据不足的情况,WGAN梯度惩罚可以用于合成新的数据样本,用于模型训练,如自然语言处理中的文本生成。。

5.数据增强:在训练深度学习模型时,可以使用WGAN梯度惩罚合成额外的训练样本,提高模型的鲁棒性和泛化能力。

6.使用便捷:

直接使用EXCEL表格导入数据,无需大幅修改程序。内部有详细注释,易于理解。

程序设计

  • 完整程序和数据获取方式:私信博主回复MATLAB实现WGAN生成对抗网络数据生成
clike 复制代码
tempLayers = [
    convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1],16个特征图
    reluLayer("Name", "relu_1")                                          % Relu 激活层
    convolution2dLayer([3, 1], 32, "Name", "conv_2", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1],32个特征图
    reluLayer("Name", "relu_2")];                                        % Relu 激活层
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中

tempLayers = [
    sequenceUnfoldingLayer("Name", "sequnfold")                      % 建立序列反折叠层
    flattenLayer("Name", "flatten")                                  % 网络铺平层

lgraph = addLayers(lgraph, tempLayers);                              % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1");             % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); 
                                                                     % 折叠层输出连接反折叠层输入
lgraph = connectLayers(lgraph, "relu_2", "sequnfold/in");            % 激活层输出 连接 反折叠层输入

%% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法
    'MaxEpochs', 500,...                 % 最大训练次数 1000
    'InitialLearnRate', best_lr,...          % 初始学习率为0.001
    'L2Regularization', best_l2,...         % L2正则化参数
    'LearnRateSchedule', 'piecewise',...  % 学习率下降
    'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1
    'LearnRateDropPeriod', 400,...        % 经过800次训练后 学习率为 0.001*0.1
    'Shuffle', 'every-epoch',...          % 每次训练打乱数据集
    'ValidationPatience', Inf,...         % 关闭验证
    'Plots', 'training-progress',...      % 画出曲线
    'Verbose', false);

%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关推荐
武汉唯众智创9 天前
网络安全教学升级!基于深度强化学习的动态对抗网络安全防护教学方案全解析
网络·人工智能·安全·web安全·生成对抗网络·网络安全
PixelMind13 天前
【超分辨率专题】HYPIR:扩散模型先验与 GAN 对抗训练相结合的新型图像复原框架
人工智能·生成对抗网络·扩散模型·图像复原
永霖光电_UVLED16 天前
GlobalFoundries从台积电获得GaN技术许可
人工智能·神经网络·生成对抗网络
8Qi818 天前
伪装图像生成之——GAN与Diffusion
人工智能·深度学习·神经网络·生成对抗网络·图像生成·伪装图像生成
极客BIM工作室19 天前
GAN vs. VAE:生成对抗网络 vs. 变分自编码机
人工智能·神经网络·生成对抗网络
扫地僧98519 天前
[特殊字符]用于糖尿病视网膜病变图像生成的生成对抗网络(GAN)
人工智能·神经网络·生成对抗网络
永霖光电_UVLED22 天前
IVWorks率先将8英寸GaN纳米线片商业化
人工智能·神经网络·生成对抗网络
Bony-23 天前
用于糖尿病视网膜病变图像生成的GAN
人工智能·神经网络·生成对抗网络
极客BIM工作室1 个月前
AI 图像生成技术发展时间脉络:从 GAN 到多模态大模型的知名模型概略解析
人工智能·神经网络·生成对抗网络
on_pluto_1 个月前
GAN生成对抗网络学习-例子:生成逼真手写数字图
人工智能·深度学习·神经网络·学习·算法·机器学习·生成对抗网络