数据生成 | MATLAB实现WGAN生成对抗网络数据生成

数据生成 | MATLAB实现WGAN生成对抗网络数据生成

目录

生成效果

基本描述

1.WGAN生成对抗网络,数据生成,样本生成程序,MATLAB程序;

2.适用于MATLAB 2020版及以上版本;

3.基于Wasserstein生成对抗网络(Wasserstein Generative Adversarial Network,WGAN)的数据生成模型引入了梯度惩罚(Gradient Penalty)来改善训练的稳定性和生成样本的质量。WGAN旨在解决原始生成对抗网络(GAN)中的训练不稳定性和模式崩溃等问题。基于Wasserstein生成对抗网络梯度惩罚的数据生成模型在一些应用中表现出较好的性能和稳定性,帮助解决了传统GAN中的一些问题,如模式崩溃和训练不稳定等。它已经被广泛应用于图像生成、数据合成等领域。;

4.数据扩充:对于数据不足的情况,WGAN梯度惩罚可以用于合成新的数据样本,用于模型训练,如自然语言处理中的文本生成。。

5.数据增强:在训练深度学习模型时,可以使用WGAN梯度惩罚合成额外的训练样本,提高模型的鲁棒性和泛化能力。

6.使用便捷:

直接使用EXCEL表格导入数据,无需大幅修改程序。内部有详细注释,易于理解。

程序设计

  • 完整程序和数据获取方式:私信博主回复MATLAB实现WGAN生成对抗网络数据生成
clike 复制代码
tempLayers = [
    convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1],16个特征图
    reluLayer("Name", "relu_1")                                          % Relu 激活层
    convolution2dLayer([3, 1], 32, "Name", "conv_2", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1],32个特征图
    reluLayer("Name", "relu_2")];                                        % Relu 激活层
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中

tempLayers = [
    sequenceUnfoldingLayer("Name", "sequnfold")                      % 建立序列反折叠层
    flattenLayer("Name", "flatten")                                  % 网络铺平层

lgraph = addLayers(lgraph, tempLayers);                              % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1");             % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); 
                                                                     % 折叠层输出连接反折叠层输入
lgraph = connectLayers(lgraph, "relu_2", "sequnfold/in");            % 激活层输出 连接 反折叠层输入

%% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法
    'MaxEpochs', 500,...                 % 最大训练次数 1000
    'InitialLearnRate', best_lr,...          % 初始学习率为0.001
    'L2Regularization', best_l2,...         % L2正则化参数
    'LearnRateSchedule', 'piecewise',...  % 学习率下降
    'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1
    'LearnRateDropPeriod', 400,...        % 经过800次训练后 学习率为 0.001*0.1
    'Shuffle', 'every-epoch',...          % 每次训练打乱数据集
    'ValidationPatience', Inf,...         % 关闭验证
    'Plots', 'training-progress',...      % 画出曲线
    'Verbose', false);

%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关推荐
QQ676580082 天前
基于 TensorFlow 2 的 WGAN来生成表格数据、数值数据和序列数据。 WGAN生成对抗网络。代码仅供参考
生成对抗网络·tensorflow·neo4j·表格数据·wgan·对抗网络·序列数据
青橘MATLAB学习3 天前
生成对抗网络(GAN)基础原理深度解析:从直观理解到形式化表达
生成对抗网络·gan·生成器·交叉熵损失·判别器·目标函数
pen-ai5 天前
【深度学习】17. 深度生成模型:DCGAN与Wasserstein GAN公式深度推导
人工智能·深度学习·生成对抗网络
盼小辉丶5 天前
PyTorch实战——基于生成对抗网络生成服饰图像
pytorch·深度学习·生成对抗网络
pen-ai7 天前
【深度学习】16. Deep Generative Models:生成对抗网络(GAN)
人工智能·深度学习·生成对抗网络
这张生成的图像能检测吗9 天前
R3GAN训练自己的数据集
人工智能·pytorch·深度学习·神经网络·算法·生成对抗网络·计算机视觉
这张生成的图像能检测吗11 天前
OpenGAN:基于开放数据生成的开放集识别
人工智能·pytorch·深度学习·算法·机器学习·生成对抗网络·聚类
盼小辉丶12 天前
PyTorch实战(7)——生成对抗网络(Generative Adversarial Network, GAN)实践详解
pytorch·生成对抗网络·生成模型·生成式人工智能
明似水12 天前
AI时代新词-生成对抗网络(GAN)
人工智能·神经网络·生成对抗网络
江苏泊苏系统集成有限公司13 天前
防震基座在半导体晶圆制造设备抛光机详细应用案例-江苏泊苏系统集成有限公司
人工智能·深度学习·目标检测·机器学习·生成对抗网络·自动驾驶·制造