- 🍨 本文为 🔗365天深度学习训练营中的学习记录博客
- 🍖 原作者: K同学啊
1.配置代码
python
import argparse
import os
import numpy as np
import math
import torchvision.transforms as transforms
from torchvision.utils import save_image
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torch
# 创建保存生成图像的文件夹
os.makedirs("images", exist_ok=True)
# 使用 argparse 解析命令行参数
parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=50, help="训练的轮数")
parser.add_argument("--batch_size", type=int, default=64, help="每个批次的样本数量")
parser.add_argument("--lr", type=float, default=0.0002, help="Adam 优化器的学习率")
parser.add_argument("--b1", type=float, default=0.5, help="Adam 优化器的第一个动量衰减参数")
parser.add_argument("--b2", type=float, default=0.999, help="Adam 优化器的第二个动量衰减参数")
parser.add_argument("--n_cpu", type=int, default=8, help="用于批次生成的 CPU 线程数")
parser.add_argument("--latent_dim", type=int, default=100, help="潜在空间的维度")
parser.add_argument("--num_classes", type=int, default=10, help="数据集的类别数")
parser.add_argument("--img_size", type=int, default=32, help="每个图像的尺寸(高度和宽度相等)")
parser.add_argument("--channels", type=int, default=1, help="图像的通道数(灰度图像通道数为 1)")
parser.add_argument("--sample_interval", type=int, default=400, help="图像采样间隔")
opt = parser.parse_args()
print(opt)
# 如果 GPU 可用,则使用 CUDA 加速
cuda = True if torch.cuda.is_available() else False
2.初始化权重
python
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find("BatchNorm") != -1:
torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
torch.nn.init.constant_(m.bias.data, 0.0)
3.定义算法模型
python
import torch.nn as nn
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
# 创建一个标签嵌入层,用于将条件标签映射到潜在空间
self.label_emb = nn.Embedding(opt.num_classes, opt.latent_dim)
# 初始化图像尺寸,用于上采样之前
self.init_size = opt.img_size // 4 # Initial size before upsampling
# 第一个全连接层,将随机噪声映射到合适的维度
self.l1 = nn.Sequential(nn.Linear(opt.latent_dim, 128 * self.init_size ** 2))
# 生成器的卷积块
self.conv_blocks = nn.Sequential(
nn.BatchNorm2d(128),
nn.Upsample(scale_factor=2),
nn.Conv2d(128, 128, 3, stride=1, padding=1),
nn.BatchNorm2d(128, 0.8),
nn.LeakyReLU(0.2, inplace=True),
nn.Upsample(scale_factor=2),
nn.Conv2d(128, 64, 3, stride=1, padding=1),
nn.BatchNorm2d(64, 0.8),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64, opt.channels, 3, stride=1, padding=1),
nn.Tanh(),
)
def forward(self, noise):
out = self.l1(noise)
out = out.view(out.shape[0], 128, self.init_size, self.init_size)
img = self.conv_blocks(out)
return img
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
def discriminator_block(in_filters, out_filters, bn=True):
"""返回每个鉴别器块的层"""
block = [nn.Conv2d(in_filters, out_filters, 3, 2, 1), nn.LeakyReLU(0.2, inplace=True), nn.Dropout2d(0.25)]
if bn:
block.append(nn.BatchNorm2d(out_filters, 0.8))
return block
# 鉴别器的卷积块
self.conv_blocks = nn.Sequential(
*discriminator_block(opt.channels, 16, bn=False),
*discriminator_block(16, 32),
*discriminator_block(32, 64),
*discriminator_block(64, 128),
)
# 下采样图像的高度和宽度
ds_size = opt.img_size // 2 ** 4
# 输出层
self.adv_layer = nn.Sequential(nn.Linear(128 * ds_size ** 2, 1), nn.Sigmoid()) # 用于鉴别真假的输出层
self.aux_layer = nn.Sequential(nn.Linear(128 * ds_size ** 2, opt.num_classes + 1), nn.Softmax()) # 用于鉴别类别的输出层
def forward(self, img):
out = self.conv_blocks(img)
out = out.view(out.shape[0], -1)
validity = self.adv_layer(out)
label = self.aux_layer(out)
return validity, label
4.配置模型
python
# 定义损失函数
adversarial_loss = torch.nn.BCELoss() # 二元交叉熵损失,用于对抗训练
auxiliary_loss = torch.nn.CrossEntropyLoss() # 交叉熵损失,用于辅助分类
# 初始化生成器和鉴别器
generator = Generator() # 创建生成器实例
discriminator = Discriminator() # 创建鉴别器实例
# 如果使用GPU,将模型和损失函数移至GPU上
if cuda:
generator.cuda()
discriminator.cuda()
adversarial_loss.cuda()
auxiliary_loss.cuda()
# 初始化模型权重
generator.apply(weights_init_normal) # 初始化生成器的权重
discriminator.apply(weights_init_normal) # 初始化鉴别器的权重
# 配置数据加载器
os.makedirs("../../data/mnist", exist_ok=True) # 创建存储MNIST数据集的文件夹
dataloader = torch.utils.data.DataLoader(
datasets.MNIST(
"../../data/mnist",
train=True,
download=True,
transform=transforms.Compose(
[transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]
),
),
batch_size=opt.batch_size,
shuffle=True,
)
# 优化器
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2)) # 生成器的优化器
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2)) # 鉴别器的优化器
# 根据是否使用GPU选择数据类型
FloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if cuda else torch.LongTensor
5.训练模型
python
for epoch in range(opt.n_epochs):
for i, (imgs, labels) in enumerate(dataloader):
batch_size = imgs.shape[0]
# 定义对抗训练的标签
valid = Variable(FloatTensor(batch_size, 1).fill_(1.0), requires_grad=False) # 用于真实样本
fake = Variable(FloatTensor(batch_size, 1).fill_(0.0), requires_grad=False) # 用于生成样本
fake_aux_gt = Variable(LongTensor(batch_size).fill_(opt.num_classes), requires_grad=False) # 用于生成样本的类别标签
# 配置输入数据
real_imgs = Variable(imgs.type(FloatTensor)) # 真实图像
labels = Variable(labels.type(LongTensor)) # 真实类别标签
# -----------------
# 训练生成器
# -----------------
optimizer_G.zero_grad()
# 采样噪声和类别标签作为生成器的输入
z = Variable(FloatTensor(np.random.normal(0, 1, (batch_size, opt.latent_dim))))
# 生成一批图像
gen_imgs = generator(z)
# 计算生成器的损失,衡量生成器欺骗鉴别器的能力
validity, _ = discriminator(gen_imgs)
g_loss = adversarial_loss(validity, valid)
g_loss.backward()
optimizer_G.step()
# ---------------------
# 训练鉴别器
# ---------------------
optimizer_D.zero_grad()
# 真实图像的损失
real_pred, real_aux = discriminator(real_imgs)
d_real_loss = (adversarial_loss(real_pred, valid) + auxiliary_loss(real_aux, labels)) / 2
# 生成图像的损失
fake_pred, fake_aux = discriminator(gen_imgs.detach())
d_fake_loss = (adversarial_loss(fake_pred, fake) + auxiliary_loss(fake_aux, fake_aux_gt)) / 2
# 总的鉴别器损失
d_loss = (d_real_loss + d_fake_loss) / 2
# 计算鉴别器准确率
pred = np.concatenate([real_aux.data.cpu().numpy(), fake_aux.data.cpu().numpy()], axis=0)
gt = np.concatenate([labels.data.cpu().numpy(), fake_aux_gt.data.cpu().numpy()], axis=0)
d_acc = np.mean(np.argmax(pred, axis=1) == gt)
d_loss.backward()
optimizer_D.step()
batches_done = epoch * len(dataloader) + i
if batches_done % opt.sample_interval == 0:
save_image(gen_imgs.data[:25], "images/%d.png" % batches_done, nrow=5, normalize=True)
print(
"[Epoch %d/%d] [Batch %d/%d] [D loss: %f, acc: %d%%] [G loss: %f]"
% (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), 100 * d_acc, g_loss.item())
)
总结:
一、Semi-Supervised GAN 简介
Semi-Supervised GAN(半监督生成对抗网络)是一种结合了半监督学习和生成对抗网络(GAN)的方法。其核心思想是:
-
增加一个"未知类别":在传统的分类任务中,假设我们有10个已知类别(如MNIST中的0-9数字)。在SSGAN中,我们增加一个额外的类别作为"未知"类别,总共11个类别。
-
双目标训练:
- 鉴别器需要完成两个任务:
- 判断图像是真实的还是生成的(GAN的基本任务)
- 判断图像属于11个类别中的哪一个(包括"未知"类别)
- 鉴别器需要完成两个任务:
-
利用未标注数据:这种方法可以有效地利用大量未标注数据和少量标注数据进行训练,提高分类性能。
-
增强生成能力:通过分类任务的监督信号,可以帮助生成器生成更高质量的图像。
二、代码结构解析
1. 配置部分
- 导入必要的库
- 设置超参数(epochs, batch size, 学习率等)
- 创建保存生成图像的文件夹
- 使用argparse解析命令行参数
- 检查CUDA是否可用
2. 权重初始化
- 定义
weights_init_normal
函数用于初始化网络权重:- Conv层使用正态分布初始化
- BatchNorm层权重使用正态分布初始化,偏置初始化为0
3. 模型定义
生成器(Generator)
- 输入:随机噪声向量
- 结构:
- 标签嵌入层(将类别标签映射到潜在空间)
- 全连接层将噪声映射到合适的维度
- 多个上采样和卷积层
- 最后使用Tanh激活函数
- 输出:生成的图像
鉴别器(Discriminator)
- 输入:图像
- 结构:
- 多个卷积层和下采样层
- 两个输出分支:
validity
:判断图像是真实还是生成(使用Sigmoid激活)label
:判断图像类别(包括"未知"类别,使用Softmax激活)
- 输出:图像真实性判断和类别预测
4. 模型配置
- 定义损失函数:BCELoss和CrossEntropyLoss
- 初始化生成器和鉴别器
- 如果可用,将模型移动到GPU
- 应用权重初始化
- 加载MNIST数据集
- 定义优化器(Adam)
- 定义张量类型(FloatTensor和LongTensor)
5. 训练过程
- 对每个epoch和batch进行训练
- 定义真实样本和生成样本的标签
- 训练生成器:
- 采样噪声
- 生成图像
- 计算并优化生成器损失
- 训练鉴别器:
- 计算真实样本和生成样本的损失
- 计算鉴别器准确率
- 优化鉴别器