李沐pytorch学习-深度学习网络构建

一、通过继承nn.Module构建自定义深度学习网络

1.1 基本网络构建

通过继承nn.module,仅需实现初始化函数前向传播函数即可完成最基本的网络构建。

python 复制代码
import torch
from torch import nn
from torch.nn import functional as F

class MLP(nn.Module):
    # 用模型参数声明层。这里,我们声明两个全连接的层
    def __init__(self):
        # 调用MLP的父类Module的构造函数来执行必要的初始化。
        # 这样,在类实例化时也可以指定其他函数参数,例如模型参数params(稍后将介绍)
        super().__init__()
        self.hidden = nn.Linear(20, 256) # 隐藏层
        self.out = nn.Linear(256, 10) # 输出层
    # 定义模型的前向传播,即如何根据输入X返回所需的模型输出
    def forward(self, X):
        # 注意,这里我们使用ReLU的函数版本,其在nn.functional模块中定义。
        return self.out(F.relu(self.hidden(X)))

1.2 参数初始化

良好初始化很有必要,深度学习框架提供默认随机初始化,也允许我们创建自定义初始化方法,满足我们通过其他规则实现初始化权重。
默认情况下,PyTorch 会根据一个范围均匀地初始化权重和偏置矩阵,这个范围是根据输入和输出维度计算出的。 PyTorch 的 nn.init 模块提供了多种预置初始化方法。

python 复制代码
import torch
from torch import nn

net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1))
X = torch.rand(size=(2, 4))
net(X)

def init_normal(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, mean=0, std=0.01)
        nn.init.zeros_(m.bias)

def init_constant(m):
    if type(m) == nn.Linear:
        nn.init.constant_(m.weight, 1)
        nn.init.zeros_(m.bias)

net.apply(init_normal)
net[0].weight.data[0], net[0].bias.data[0]

net.apply(init_constant)
net[0].weight.data[0], net[0].bias.data[0]

每层使用不同的方法初始化

python 复制代码
import torch
from torch import nn

net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1))

def init_xavier(m):
    if type(m) == nn.Linear:
        nn.init.xavier_uniform_(m.weight)

def init_42(m):
    if type(m) == nn.Linear:
        nn.init.constant_(m.weight, 42)

net[0].apply(init_xavier)
net[2].apply(init_42)
print(net[0].weight.data[0])
print(net[2].weight.data)

自定义初始化

python 复制代码
import torch
from torch import nn

net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1))

def my_init(m):
    if type(m) == nn.Linear:
        print("Init", *[(name, param.shape)for name, param in m.named_parameters()][0])
        nn.init.uniform_(m.weight, -10, 10)
        m.weight.data *= m.weight.data.abs() >= 5

net.apply(my_init)
net[0].weight[:2]

解释一下这一句:m.weight.data *= m.weight.data.abs() >= 5

可以写成m.weight.data *= (m.weight.data.abs() >= 5)

所以这句的意思是如果m.weight.data.abs()不小于5,则m.weight.data不变,否则将其置为零。

二、网络的保存与载入

网络结构和参数(weight、bias等)均需保存,网络结构通过.py文件记录,参数保存在文件里。

python 复制代码
import torch
from torch import nn
from torch.nn import functional as F

class MLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.hidden = nn.Linear(20, 256)
        self.output = nn.Linear(256, 10)

def forward(self, x):
    return self.output(F.relu(self.hidden(x)))

net = MLP()
X = torch.randn(size=(2, 20))
Y = net(X)

# 将参数保存在字典'mlp.params'中
torch.save(net.state_dict(), 'mlp.params')

# 从保存的字典中恢复参数
clone = MLP()
clone.load_state_dict(torch.load('mlp.params'))
clone.eval()
相关推荐
2303_Alpha2 天前
SpringBoot
笔记·学习
萘柰奈2 天前
Unity学习----【进阶】TextMeshPro学习(三)--进阶知识点(TMP基础设置,材质球相关,两个辅助工具类)
学习·unity
沐矢羽2 天前
Tomcat PUT方法任意写文件漏洞学习
学习·tomcat
好奇龙猫2 天前
日语学习-日语知识点小记-进阶-JLPT-N1阶段蓝宝书,共120语法(10):91-100语法+考え方13
学习
Billy_Zuo2 天前
人工智能深度学习——卷积神经网络(CNN)
人工智能·深度学习·cnn
l12345sy2 天前
Day24_【深度学习—广播机制】
人工智能·pytorch·深度学习·广播机制
IT古董2 天前
【第五章:计算机视觉-项目实战之图像分类实战】1.经典卷积神经网络模型Backbone与图像-(4)经典卷积神经网络ResNet的架构讲解
人工智能·计算机视觉·cnn
向阳花开_miemie2 天前
Android音频学习(十八)——混音流程
学习·音视频
工大一只猿2 天前
51单片机学习
嵌入式硬件·学习·51单片机
c0d1ng2 天前
量子计算学习(第十四周周报)
学习·量子计算