神经网络基础-神经网络补充概念-56-迁移学习

迁移学习(Transfer Learning)是一种机器学习技术,旨在将在一个任务上学到的知识或模型迁移到另一个相关任务上,以提高新任务的性能。迁移学习的核心思想是通过利用源领域(source domain)的知识来改善目标领域(target domain)的学习任务。

迁移学习的优势在于可以充分利用已有的数据和模型,从而在目标任务上减少数据需求,加快模型收敛速度,并提高模型的泛化能力。迁移学习在许多应用领域都表现出色,尤其是在数据稀缺、样本不平衡、高维数据等情况下特别有效。

迁移学习可以分为以下几种主要类型:

特征迁移:在源领域上训练的模型的特征表示,可以用于目标领域的任务。通常通过冻结前几层的权重或者仅使用某些层的特征表示,然后在目标领域上重新训练一些层。

模型迁移:将源领域上训练的模型迁移到目标领域上,可以是整个模型或部分模型。在某些情况下,可以进行微调(fine-tuning)以适应目标任务。

知识迁移:将源领域的知识,如权重、参数、模型结构等,应用到目标领域。例如,使用预训练的语言模型来提取文本特征。

领域自适应:通过在源领域和目标领域之间进行领域适应,从而提高模型在目标领域上的性能。

迁移学习的步骤通常包括:

选择源领域和目标领域:确定要从源领域迁移到目标领域的任务。

选择迁移策略:确定如何使用源领域的知识,如选择特征、模型或知识。

调整模型:在目标领域上微调模型或重新训练部分模型,以适应目标任务。

评估和调整:在目标领域上进行评估,根据性能调整迁移策略,如调整特征选择、层级微调等。

相关推荐
管牛牛9 小时前
图像的卷积操作
人工智能·深度学习·计算机视觉
副露のmagic11 小时前
深度学习基础复健
人工智能·深度学习
番茄大王sc11 小时前
2026年科研AI工具深度测评(一):文献调研与综述生成领域,维普科创助手领跑学术严谨性
人工智能·深度学习·考研·学习方法·论文笔记
爱吃泡芙的小白白14 小时前
神经网络压缩实战指南:让大模型“瘦身”跑得更快
人工智能·深度学习·神经网络·模型压缩
YelloooBlue14 小时前
深度学习 SOP: conda通过命令快速构建指定版本tensorflow gpu环境。
深度学习·conda·tensorflow
AI即插即用15 小时前
即插即用系列 | AAAI 2026 WaveFormer: 当视觉建模遇上波动方程,频率-时间解耦的新SOTA
图像处理·人工智能·深度学习·神经网络·计算机视觉·视觉检测
轻览月15 小时前
【DL】复杂卷积神经网络Ⅰ
人工智能·神经网络·cnn
逄逄不是胖胖15 小时前
《动手学深度学习》-55-2RNN的简单实现
人工智能·深度学习
咚咚王者15 小时前
人工智能之核心技术 深度学习 第四章 循环神经网络(RNN)与序列模型
人工智能·rnn·深度学习
机 _ 长16 小时前
YOLO26 改进 | 训练策略 | 知识蒸馏 (Response + Feature + Relation)
python·深度学习·yolo·目标检测·机器学习·计算机视觉