神经网络基础-神经网络补充概念-56-迁移学习

迁移学习(Transfer Learning)是一种机器学习技术,旨在将在一个任务上学到的知识或模型迁移到另一个相关任务上,以提高新任务的性能。迁移学习的核心思想是通过利用源领域(source domain)的知识来改善目标领域(target domain)的学习任务。

迁移学习的优势在于可以充分利用已有的数据和模型,从而在目标任务上减少数据需求,加快模型收敛速度,并提高模型的泛化能力。迁移学习在许多应用领域都表现出色,尤其是在数据稀缺、样本不平衡、高维数据等情况下特别有效。

迁移学习可以分为以下几种主要类型:

特征迁移:在源领域上训练的模型的特征表示,可以用于目标领域的任务。通常通过冻结前几层的权重或者仅使用某些层的特征表示,然后在目标领域上重新训练一些层。

模型迁移:将源领域上训练的模型迁移到目标领域上,可以是整个模型或部分模型。在某些情况下,可以进行微调(fine-tuning)以适应目标任务。

知识迁移:将源领域的知识,如权重、参数、模型结构等,应用到目标领域。例如,使用预训练的语言模型来提取文本特征。

领域自适应:通过在源领域和目标领域之间进行领域适应,从而提高模型在目标领域上的性能。

迁移学习的步骤通常包括:

选择源领域和目标领域:确定要从源领域迁移到目标领域的任务。

选择迁移策略:确定如何使用源领域的知识,如选择特征、模型或知识。

调整模型:在目标领域上微调模型或重新训练部分模型,以适应目标任务。

评估和调整:在目标领域上进行评估,根据性能调整迁移策略,如调整特征选择、层级微调等。

相关推荐
cyyt11 分钟前
深度学习周报(1.26~2.1)
人工智能·深度学习
shangjian00724 分钟前
AI-大语言模型LLM-模型微调8-进阶操作
人工智能·深度学习·语言模型
明明真系叻25 分钟前
2026.2.1周报
深度学习·量子计算
机器学习之心43 分钟前
金融时间序列预测全流程框架:从SHAP特征选择到智能算法优化深度学习预测模型,核心三章实验已完成,尚未发表,期待有缘人!
人工智能·深度学习·金融
渡我白衣1 小时前
【MySQL基础】(2):数据库基础概念
数据库·人工智能·深度学习·神经网络·mysql·机器学习·自然语言处理
【赫兹威客】浩哥1 小时前
交通违章识别数据集与YOLO系列模型训练成果
人工智能·深度学习·机器学习
下午写HelloWorld1 小时前
生成对抗网络GAN的简要理解
人工智能·神经网络·生成对抗网络
Yeats_Liao1 小时前
微调决策树:何时使用Prompt Engineering,何时选择Fine-tuning?
前端·人工智能·深度学习·算法·决策树·机器学习·prompt
听麟1 小时前
HarmonyOS 6.0+ PC端智能监控助手开发实战:摄像头联动与异常行为识别落地
人工智能·深度学习·华为·harmonyos
薛定谔的猫198210 小时前
十七、用 GPT2 中文对联模型实现经典上联自动对下联:
人工智能·深度学习·gpt2·大模型 训练 调优