神经网络基础-神经网络补充概念-56-迁移学习

迁移学习(Transfer Learning)是一种机器学习技术,旨在将在一个任务上学到的知识或模型迁移到另一个相关任务上,以提高新任务的性能。迁移学习的核心思想是通过利用源领域(source domain)的知识来改善目标领域(target domain)的学习任务。

迁移学习的优势在于可以充分利用已有的数据和模型,从而在目标任务上减少数据需求,加快模型收敛速度,并提高模型的泛化能力。迁移学习在许多应用领域都表现出色,尤其是在数据稀缺、样本不平衡、高维数据等情况下特别有效。

迁移学习可以分为以下几种主要类型:

特征迁移:在源领域上训练的模型的特征表示,可以用于目标领域的任务。通常通过冻结前几层的权重或者仅使用某些层的特征表示,然后在目标领域上重新训练一些层。

模型迁移:将源领域上训练的模型迁移到目标领域上,可以是整个模型或部分模型。在某些情况下,可以进行微调(fine-tuning)以适应目标任务。

知识迁移:将源领域的知识,如权重、参数、模型结构等,应用到目标领域。例如,使用预训练的语言模型来提取文本特征。

领域自适应:通过在源领域和目标领域之间进行领域适应,从而提高模型在目标领域上的性能。

迁移学习的步骤通常包括:

选择源领域和目标领域:确定要从源领域迁移到目标领域的任务。

选择迁移策略:确定如何使用源领域的知识,如选择特征、模型或知识。

调整模型:在目标领域上微调模型或重新训练部分模型,以适应目标任务。

评估和调整:在目标领域上进行评估,根据性能调整迁移策略,如调整特征选择、层级微调等。

相关推荐
翱翔的苍鹰13 小时前
完整的“RNN + jieba 中文情感分析”项目之一:终极版
人工智能·rnn·深度学习
茶栀(*´I`*)13 小时前
PyTorch实战:CNN实现CIFAR-10图像分类的思路与优化
pytorch·深度学习·cnn
爱喝可乐的老王14 小时前
深度学习初认识
人工智能·深度学习
孤狼warrior15 小时前
图像生成 Stable Diffusion模型架构介绍及使用代码 附数据集批量获取
人工智能·python·深度学习·stable diffusion·cnn·transformer·stablediffusion
努力毕业的小土博^_^15 小时前
【AI课程领学】第十二课 · 超参数设定与网络训练(课时1) 网络超参数设定:从“要调什么”到“怎么系统地调”(含 PyTorch 可复用模板)
人工智能·pytorch·python·深度学习·神经网络·机器学习
陈天伟教授16 小时前
人工智能应用-机器视觉:AI 鉴伪 08.虚假图片鉴别
人工智能·神经网络·数码相机·生成对抗网络·dnn
Pith_16 小时前
模式识别与机器学习复习笔记(下-深度学习篇)
笔记·深度学习·机器学习
shengMio16 小时前
周报——2026.1.19-1.25
深度学习·论文写作
高洁0117 小时前
数字孪生应用于特种设备领域的技术难点
人工智能·python·深度学习·机器学习·知识图谱
Piar1231sdafa17 小时前
基于YOLOv26的海洋鱼类识别与检测系统深度学习训练数据集Python实现_1
python·深度学习·yolo