机器学习与模型识别1:SVM(支持向量机)

一、简介

SVM是一种二类分类模型,在特征空间中寻找间隔最大的分离超平面,使得数据得到高效的二分类。

二、SVM损失函数

SVM 的三种损失函数衡量模型的性能。

1. 0-1 损失:
当正例样本落在 y=0 下方则损失为 0,否则损失为 1.
当负例样本落在 y=0 上方则损失为0,否则损失为 1.
2. Hinge (合页)损失:
当正例落在 y >= 1 一侧则损失为0,否则距离越远则损失越大.
当负例落在 y <= -1 一侧则损失为0,否则距离越远则损失越大.
3. Logistic 损失:
当正例落在 y > 0 一侧,并且距离 y=0 越远则损失越小.
当负例落在 y < 0 一侧,并且距离 y=0 越远则损失越小.

当存在线性不可分的场景时,我们需要使用核函数来提高训练样本的维度、或者将训练样本投向高维,SVM 默认使用 RBF 核函数,将低维空间样本投射到高维空间,再寻找分割超平面。

  • SVM的优点:

    • 在高维空间中非常高效;
    • 即使在数据维度比样本数量大的情况下仍然有效;
  • SVM的缺点:

    • 如果特征数量比样本数量大得多,在选择核函数时要避免过拟合;

    • 对缺失数据敏感;

    • 对于核函数的高维映射解释力不强

相关推荐
聚客AI9 小时前
🌟大模型为什么产生幻觉?预训练到推理的漏洞全揭秘
人工智能·llm·掘金·日新计划
Juchecar9 小时前
一文讲清 nn.Sequential 等容器类
人工智能
阿里云云原生9 小时前
如何快速看懂「祖传项目」?Qoder 强势推出新利器
人工智能
美团技术团队10 小时前
LongCat-Flash:如何使用 SGLang 部署美团 Agentic 模型
人工智能·算法
程序员小袁11 小时前
基于C-MTEB/CMedQAv2-rerankingv的Qwen3-1.7b模型微调-demo
人工智能
飞哥数智坊12 小时前
AI 编程一年多,我终于明白:比技巧更重要的,是熟练度
人工智能·ai编程
新智元13 小时前
收手吧 GPT-5-Codex,外面全是 AI 编程智能体!
人工智能·openai
IT_陈寒13 小时前
Java 性能优化:5个被低估的JVM参数让你的应用吞吐量提升50%
前端·人工智能·后端
阿里云云原生13 小时前
阿里云基础设施 AI Tech Day AI 原生,智构未来——AI 原生架构与企业实践专场
人工智能
Memene摸鱼日报14 小时前
「Memene 摸鱼日报 2025.9.16」OpenAI 推出 GPT-5-Codex 编程模型,xAI 发布 Grok 4 Fast
人工智能·aigc