机器学习与模型识别1:SVM(支持向量机)

一、简介

SVM是一种二类分类模型,在特征空间中寻找间隔最大的分离超平面,使得数据得到高效的二分类。

二、SVM损失函数

SVM 的三种损失函数衡量模型的性能。

1. 0-1 损失:
当正例样本落在 y=0 下方则损失为 0,否则损失为 1.
当负例样本落在 y=0 上方则损失为0,否则损失为 1.
2. Hinge (合页)损失:
当正例落在 y >= 1 一侧则损失为0,否则距离越远则损失越大.
当负例落在 y <= -1 一侧则损失为0,否则距离越远则损失越大.
3. Logistic 损失:
当正例落在 y > 0 一侧,并且距离 y=0 越远则损失越小.
当负例落在 y < 0 一侧,并且距离 y=0 越远则损失越小.

当存在线性不可分的场景时,我们需要使用核函数来提高训练样本的维度、或者将训练样本投向高维,SVM 默认使用 RBF 核函数,将低维空间样本投射到高维空间,再寻找分割超平面。

  • SVM的优点:

    • 在高维空间中非常高效;
    • 即使在数据维度比样本数量大的情况下仍然有效;
  • SVM的缺点:

    • 如果特征数量比样本数量大得多,在选择核函数时要避免过拟合;

    • 对缺失数据敏感;

    • 对于核函数的高维映射解释力不强

相关推荐
烟锁池塘柳015 分钟前
【深度学习】评估模型复杂度:GFLOPs与Params详解
人工智能·深度学习
果冻人工智能15 分钟前
🧠5个AI工程师在第一次构建RAG时常犯的错误
人工智能
白熊18821 分钟前
【计算机视觉】CV实战项目- DFace: 基于深度学习的高性能人脸识别
人工智能·深度学习·计算机视觉
layneyao23 分钟前
自动驾驶L4级技术落地:特斯拉、Waymo与华为的路线之争
人工智能·华为·自动驾驶
訾博ZiBo24 分钟前
AI日报 - 2025年04月30日
人工智能
毒果29 分钟前
深度学习大模型: AI 阅卷替代人工阅卷
人工智能·深度学习
吾日三省吾码39 分钟前
GitHub Copilot (Gen-AI) 很有用,但不是很好
人工智能·github·copilot
一颗橘子宣布成为星球1 小时前
Unity AI-使用Ollama本地大语言模型运行框架运行本地Deepseek等模型实现聊天对话(一)
人工智能·unity·语言模型·游戏引擎
南 阳1 小时前
从微服务到AI服务:Nacos 3.0如何重构下一代动态治理体系?
人工智能·微服务·云原生·重构
fmingzh1 小时前
NVIDIA高级辅助驾驶安全与技术读后感
人工智能·安全·自动驾驶