open cv学习 (四)图像的几何变换

图像的几何变换

demo1
python 复制代码
# dsize实现缩放
import cv2
img = cv2.imread("./cat.jpg")
dst1 = cv2.resize(img, (100, 100))
dst2 = cv2.resize(img, (400, 400))
# cv2.imshow("img", img)
# cv2.imshow("dst1", dst1)
# cv2.imshow("dst2", dst2)
cv2.imwrite("./cat01.png", dst1)
cv2.waitKey()
cv2.destroyAllWindows()
demo2
python 复制代码
# fx 和 fy 参数实现缩放
import cv2
img = cv2.imread("./cat.jpg")
dst3 = cv2.resize(img, None, fx=1/3, fy=1/2)
dst4 = cv2.resize(img, None, fx=2, fy=2)
cv2.imshow("img", img)
cv2.imshow("dst3", dst3)
cv2.imshow("dst4", dst4)
cv2.waitKey()
cv2.destroyAllWindows()
demo3
python 复制代码
# 翻转
import cv2
img = cv2.imread("./cat01.png")
dst1 = cv2.flip(img, 0)
dst2 = cv2.flip(img, 1)
dst3 = cv2.flip(img, -1)
cv2.imshow("dst1", dst1)
cv2.imshow("dst2", dst2)
cv2.imshow("dst3", dst3)
cv2.waitKey()
cv2.destroyAllWindows()
demo4
python 复制代码
# 图像平移
import cv2
import numpy as np
img = cv2.imread("./cat01.png")
# 读取像素行数
rows = len(img)
# 读取像素列数
cols = len(img[0])

M = np.float32([[1, 0, 0], [0, 1, -50]])
dst = cv2.warpAffine(img, M, (cols, rows))
cv2.imshow("img", img)
cv2.imshow("dst", dst)
cv2.waitKey()
cv2.destroyAllWindows()
demo5
复制代码
import cv2
img = cv2.imread("./cat01.png")
# 读取像素行数
rows = len(img)
# 读取像素列数
cols = len(img[0])

center = (rows/2, cols/2)
M = cv2.getRotationMatrix2D(center, 30, 0.8)
dst = cv2.warpAffine(img, M, (cols, rows))
cv2.imshow("img", img)
cv2.imshow("dst", dst)
cv2.waitKey()
cv2.destroyAllWindows()
demo6
python 复制代码
import cv2
import numpy as np
img = cv2.imread("./cat01.png")
# 读取像素行数
rows = len(img)
# 读取像素列数
cols = len(img[0])
p1 = np.zeros((3, 2), np.float32)
# 左上角坐标
p1[0] = [0, 0]
# 右上角坐标
p1[1] = [cols - 1, 0]
# 左下角坐标
p1[2] = [0, rows - 1]

p2 = np.zeros((3, 2), np.float32)
p2[0] = [50, 0]
p2[1] = [cols - 1, 0]
p2[2] = [0, rows - 1]
M = cv2.getAffineTransform(p1, p2)
dst = cv2.warpAffine(img, M, (cols, rows))
cv2.imshow("img", img)
cv2.imshow("dst", dst)
cv2.waitKey()
cv2.destroyAllWindows()
demo7
python 复制代码
import cv2
import numpy as np
img = cv2.imread("./cat01.png")

rows = len(img)
cols = len(img[0])

p1 = np.zeros((4, 2), np.float32)
p1[0] = [0, 0]
p1[1] = [cols - 1, 0]
p1[2] = [0, rows - 1]
p1[3] = [cols - 1, rows - 1]
p2 = np.zeros((4, 2), np.float32)
M = cv2.getPerspectiveTransform(p1, p2)
dst = cv2.warpPerspective(img, M, (cols, rows))
cv2.imshow("img", img)
cv2.imshow("dst", dst)
cv2.waitKey()
cv2.destroyAllWindows()
相关推荐
Bathwind-w6 小时前
FOC开发工具学习
学习
Coder_Boy_7 小时前
DDD从0到企业级:迭代式学习 (共17章)之 四
java·人工智能·驱动开发·学习
deng-c-f7 小时前
Linux C/C++ 学习日记(49):线程池
c++·学习·线程池
HyperAI超神经7 小时前
【vLLM 学习】Prithvi Geospatial Mae
人工智能·python·深度学习·学习·大语言模型·gpu·vllm
AI视觉网奇8 小时前
图像编码成特征向量
人工智能·计算机视觉
TL滕9 小时前
从0开始学算法——第十八天(分治算法)
笔记·学习·算法
思成不止于此10 小时前
【MySQL 零基础入门】MySQL 约束精讲(一):基础约束篇
数据库·笔记·sql·学习·mysql
小黄人软件10 小时前
【过度滥用眼】真正的理解,从闭眼开始:如何把“眼睛视觉依赖”降到最低,把大脑效率提到最高。【最少用眼的工作与学习体系】
学习
老华带你飞10 小时前
建筑材料管理|基于springboot 建筑材料管理系统(源码+数据库+文档)
java·数据库·vue.js·spring boot·后端·学习·spring
L.fountain11 小时前
图像自回归生成(Auto-regressive image generation)实战学习(一)
人工智能·深度学习·学习·计算机视觉·图像自回归