open cv学习 (四)图像的几何变换

图像的几何变换

demo1
python 复制代码
# dsize实现缩放
import cv2
img = cv2.imread("./cat.jpg")
dst1 = cv2.resize(img, (100, 100))
dst2 = cv2.resize(img, (400, 400))
# cv2.imshow("img", img)
# cv2.imshow("dst1", dst1)
# cv2.imshow("dst2", dst2)
cv2.imwrite("./cat01.png", dst1)
cv2.waitKey()
cv2.destroyAllWindows()
demo2
python 复制代码
# fx 和 fy 参数实现缩放
import cv2
img = cv2.imread("./cat.jpg")
dst3 = cv2.resize(img, None, fx=1/3, fy=1/2)
dst4 = cv2.resize(img, None, fx=2, fy=2)
cv2.imshow("img", img)
cv2.imshow("dst3", dst3)
cv2.imshow("dst4", dst4)
cv2.waitKey()
cv2.destroyAllWindows()
demo3
python 复制代码
# 翻转
import cv2
img = cv2.imread("./cat01.png")
dst1 = cv2.flip(img, 0)
dst2 = cv2.flip(img, 1)
dst3 = cv2.flip(img, -1)
cv2.imshow("dst1", dst1)
cv2.imshow("dst2", dst2)
cv2.imshow("dst3", dst3)
cv2.waitKey()
cv2.destroyAllWindows()
demo4
python 复制代码
# 图像平移
import cv2
import numpy as np
img = cv2.imread("./cat01.png")
# 读取像素行数
rows = len(img)
# 读取像素列数
cols = len(img[0])

M = np.float32([[1, 0, 0], [0, 1, -50]])
dst = cv2.warpAffine(img, M, (cols, rows))
cv2.imshow("img", img)
cv2.imshow("dst", dst)
cv2.waitKey()
cv2.destroyAllWindows()
demo5
复制代码
import cv2
img = cv2.imread("./cat01.png")
# 读取像素行数
rows = len(img)
# 读取像素列数
cols = len(img[0])

center = (rows/2, cols/2)
M = cv2.getRotationMatrix2D(center, 30, 0.8)
dst = cv2.warpAffine(img, M, (cols, rows))
cv2.imshow("img", img)
cv2.imshow("dst", dst)
cv2.waitKey()
cv2.destroyAllWindows()
demo6
python 复制代码
import cv2
import numpy as np
img = cv2.imread("./cat01.png")
# 读取像素行数
rows = len(img)
# 读取像素列数
cols = len(img[0])
p1 = np.zeros((3, 2), np.float32)
# 左上角坐标
p1[0] = [0, 0]
# 右上角坐标
p1[1] = [cols - 1, 0]
# 左下角坐标
p1[2] = [0, rows - 1]

p2 = np.zeros((3, 2), np.float32)
p2[0] = [50, 0]
p2[1] = [cols - 1, 0]
p2[2] = [0, rows - 1]
M = cv2.getAffineTransform(p1, p2)
dst = cv2.warpAffine(img, M, (cols, rows))
cv2.imshow("img", img)
cv2.imshow("dst", dst)
cv2.waitKey()
cv2.destroyAllWindows()
demo7
python 复制代码
import cv2
import numpy as np
img = cv2.imread("./cat01.png")

rows = len(img)
cols = len(img[0])

p1 = np.zeros((4, 2), np.float32)
p1[0] = [0, 0]
p1[1] = [cols - 1, 0]
p1[2] = [0, rows - 1]
p1[3] = [cols - 1, rows - 1]
p2 = np.zeros((4, 2), np.float32)
M = cv2.getPerspectiveTransform(p1, p2)
dst = cv2.warpPerspective(img, M, (cols, rows))
cv2.imshow("img", img)
cv2.imshow("dst", dst)
cv2.waitKey()
cv2.destroyAllWindows()
相关推荐
runningshark2 分钟前
【项目】示波器学习与制作
学习
€8113 分钟前
Java入门级教程24——Vert.x的学习
java·开发语言·学习·thymeleaf·数据库操作·vert.x的路由处理机制·datadex实战
自可乐34 分钟前
n8n全面学习教程:从入门到精通的自动化工作流引擎实践指南
运维·人工智能·学习·自动化
HDO清风43 分钟前
CASIA-HWDB2.x 数据集DGRL文件解析(python)
开发语言·人工智能·pytorch·python·目标检测·计算机视觉·restful
深蓝海拓1 小时前
PySide6从0开始学习的笔记(二十六) 重写Qt窗口对象的事件(QEvent)处理方法
笔记·python·qt·学习·pyqt
工程师老罗2 小时前
什么是目标检测?
人工智能·目标检测·计算机视觉
星火开发设计2 小时前
C++ 预处理指令:#include、#define 与条件编译
java·开发语言·c++·学习·算法·知识
沃达德软件3 小时前
图像处理与复原技术
图像处理·人工智能·深度学习·神经网络·目标检测·计算机视觉·目标跟踪
Dfreedom.3 小时前
图像滤波:非线性滤波与边缘保留技术
图像处理·人工智能·opencv·计算机视觉·非线性滤波·图像滤波
BackCatK Chen3 小时前
第 1 篇:软件视角扫盲|TMC2240 软件核心特性 + 学习路径(附工具清单)
c语言·stm32·单片机·学习·电机驱动·保姆级教程·tmc2240