open cv学习 (四)图像的几何变换

图像的几何变换

demo1
python 复制代码
# dsize实现缩放
import cv2
img = cv2.imread("./cat.jpg")
dst1 = cv2.resize(img, (100, 100))
dst2 = cv2.resize(img, (400, 400))
# cv2.imshow("img", img)
# cv2.imshow("dst1", dst1)
# cv2.imshow("dst2", dst2)
cv2.imwrite("./cat01.png", dst1)
cv2.waitKey()
cv2.destroyAllWindows()
demo2
python 复制代码
# fx 和 fy 参数实现缩放
import cv2
img = cv2.imread("./cat.jpg")
dst3 = cv2.resize(img, None, fx=1/3, fy=1/2)
dst4 = cv2.resize(img, None, fx=2, fy=2)
cv2.imshow("img", img)
cv2.imshow("dst3", dst3)
cv2.imshow("dst4", dst4)
cv2.waitKey()
cv2.destroyAllWindows()
demo3
python 复制代码
# 翻转
import cv2
img = cv2.imread("./cat01.png")
dst1 = cv2.flip(img, 0)
dst2 = cv2.flip(img, 1)
dst3 = cv2.flip(img, -1)
cv2.imshow("dst1", dst1)
cv2.imshow("dst2", dst2)
cv2.imshow("dst3", dst3)
cv2.waitKey()
cv2.destroyAllWindows()
demo4
python 复制代码
# 图像平移
import cv2
import numpy as np
img = cv2.imread("./cat01.png")
# 读取像素行数
rows = len(img)
# 读取像素列数
cols = len(img[0])

M = np.float32([[1, 0, 0], [0, 1, -50]])
dst = cv2.warpAffine(img, M, (cols, rows))
cv2.imshow("img", img)
cv2.imshow("dst", dst)
cv2.waitKey()
cv2.destroyAllWindows()
demo5
import cv2
img = cv2.imread("./cat01.png")
# 读取像素行数
rows = len(img)
# 读取像素列数
cols = len(img[0])

center = (rows/2, cols/2)
M = cv2.getRotationMatrix2D(center, 30, 0.8)
dst = cv2.warpAffine(img, M, (cols, rows))
cv2.imshow("img", img)
cv2.imshow("dst", dst)
cv2.waitKey()
cv2.destroyAllWindows()
demo6
python 复制代码
import cv2
import numpy as np
img = cv2.imread("./cat01.png")
# 读取像素行数
rows = len(img)
# 读取像素列数
cols = len(img[0])
p1 = np.zeros((3, 2), np.float32)
# 左上角坐标
p1[0] = [0, 0]
# 右上角坐标
p1[1] = [cols - 1, 0]
# 左下角坐标
p1[2] = [0, rows - 1]

p2 = np.zeros((3, 2), np.float32)
p2[0] = [50, 0]
p2[1] = [cols - 1, 0]
p2[2] = [0, rows - 1]
M = cv2.getAffineTransform(p1, p2)
dst = cv2.warpAffine(img, M, (cols, rows))
cv2.imshow("img", img)
cv2.imshow("dst", dst)
cv2.waitKey()
cv2.destroyAllWindows()
demo7
python 复制代码
import cv2
import numpy as np
img = cv2.imread("./cat01.png")

rows = len(img)
cols = len(img[0])

p1 = np.zeros((4, 2), np.float32)
p1[0] = [0, 0]
p1[1] = [cols - 1, 0]
p1[2] = [0, rows - 1]
p1[3] = [cols - 1, rows - 1]
p2 = np.zeros((4, 2), np.float32)
M = cv2.getPerspectiveTransform(p1, p2)
dst = cv2.warpPerspective(img, M, (cols, rows))
cv2.imshow("img", img)
cv2.imshow("dst", dst)
cv2.waitKey()
cv2.destroyAllWindows()
相关推荐
一棵开花的树,枝芽无限靠近你44 分钟前
【PPTist】表格功能
前端·笔记·学习·编辑器·ppt·pptist
一勺汤2 小时前
YOLO11改进-注意力-引入自调制特征聚合模块SMFA
人工智能·深度学习·算法·yolo·目标检测·计算机视觉·目标跟踪
yuwinter2 小时前
鸿蒙HarmonyOS学习笔记(8)
笔记·学习
Ricciflows2 小时前
MIT线性代数教材:Linear Algebra and Its Applications
人工智能·学习·线性代数·机器学习·数学建模·矩阵
jndingxin3 小时前
OpenCV相机标定与3D重建(37)计算两幅图像之间单应性矩阵(Homography Matrix)的函数findHomography()的使用
opencv·3d
计科土狗3 小时前
离散数学第二章笔记
学习
美式小田3 小时前
Cadence学习笔记 12 PCB初始化设置
笔记·嵌入式硬件·学习·cadence
席万里4 小时前
【MySQL学习笔记】关于索引
笔记·学习·mysql
深蓝海拓4 小时前
使用sam进行零样本、零学习的分割实践
人工智能·深度学习·学习·目标检测·计算机视觉
滴_咕噜咕噜5 小时前
学习笔记(prism--视频【WPF-prism核心教程】)--待更新
笔记·学习·wpf