GPT-4一纸重洗:从97.6%降至2.4%的巨大挑战

斯坦福大学和加州大学伯克利分校合作进行的一项 "How Is ChatGPT's Behavior Changing Over Time?" 研究表明,随着时间的推移,GPT-4 的响应能力非但没有提高,反而随着语言模型的进一步更新而变得更糟糕。

研究小组评估了 2023 年 3 月和 2023 年 6 月版本的 GPT-3.5 和 GPT-4 在四个不同任务上的表现,分别为:解决数学问题、回答敏感 / 危险问题、代码生成以及视觉推理。

他们使用了一个包含 500 个问题的数据集评估模型,测试模型必须确定给定的整数是否是素数。结果表明,GPT-4(2023 年 3 月版)在识别质数方面表现非常出色,正确回答了其中的 488 个问题,准确率达 97.6%。但 GPT-4 (2023 年 6 月版)在这些问题上的表现却非常糟糕,只答对了 12 个问题,准确率仅为 2.4%。

而与之相反,GPT-3.5(2023 年 6 月版)在这项任务中的表现则要比 GPT-3.5(2023 年 3 月版)好得多。

研究团队还使用了 Chain-of-Thought(思维链)来帮助模型进行推理,提出 "17077 是一个质数吗?一步一步地思考" 的问题。但最新版本的 GPT-4 不仅错误地回答了 否,还没有生成解题的中间步骤。

与 3 月份相比,GPT-4 在 6 月份不太愿意回答敏感问题。而且与 3 月份相比,GPT-4 和 GPT-3.5 在 6 月份生成代码时也出现了更多格式错误,质量明显下降。

对于 GPT-4,可直接执行的生成代码百分比从 3 月份的 52.0% 降至 6 月份的 10.0%;GPT-3.5 也从 22.0% 降至了 2.0%。两种模型的冗余度也有小幅增加,其中 GPT-4 增加了 20%。

视觉推理方面,GPT-4 和 GPT-3.5 的性能都略有提高。但对于 90% 以上的视觉推理查询,3 月份和 6 月份版本生成的结果完全相同。这些服务的总体性能也很低:GPT-4 为 27.4%,GPT-3.5 为 12.2%。且在某些特定问题上,GPT-4 在 6 月份表现要比在 3 月份差。

研究人员认为,这些结果表明,相同 的 LLM 服务的行为会在相对较短的时间内发生重大变化,凸显了对 LLM 质量进行持续监控的必要性。

"我们计划通过定期评估 GPT-3.5、GPT-4 和其他 LLM 在不同任务中的表现,在一项持续的长期研究中更新本文介绍的结果。对于依赖 LLM 服务作为其日常工作流程组成部分的用户或公司,我们建议他们对其应用程序进行类似的监控分析。"

相关推荐
SailingCoder4 分钟前
AI 流式对话该怎么做?SSE、fetch、axios 一次讲清楚
前端·javascript·人工智能·ai·node.js
腾视科技6 分钟前
超低功耗 性能卓越|腾视科技重磅推出TS-SG-SM9系列AI算力模组,引领边缘智能计算新篇章
人工智能·科技
视界先声6 分钟前
洁诚新能源:践行双碳战略的绿色行动派
大数据·人工智能·物联网
gorgeous(๑>؂<๑)6 分钟前
【南京大学-李文斌-arXiv25】超高分辨率遥感多模态大语言模型基准测试
人工智能·语言模型·自然语言处理
低调小一6 分钟前
Google A2UI 协议深度解析:AI 生成 UI 的机遇与实践(客户端视角,Android/iOS 都能落地)
android·人工智能·ui
AI白艿7 分钟前
男装市场稳健增长?AI助力精准把握消费新趋势
人工智能·aigc
5G全域通7 分钟前
工信部2026年短信业务合规申请全流程官方指南(1月1日强制生效)
大数据·网络·人工智能·信息与通信·时序数据库
木卫四科技7 分钟前
【CES 2026】木卫四科技携“合规全生命周期”汽车网络安全方案亮相 CES 2026
人工智能·木卫四科技·ces2026·智能汽车安全
爱思德学术9 分钟前
中国计算机学会(CCF)推荐学术会议-B(交叉/综合/新兴):CogSci 2026
人工智能·神经网络·认知科学
好奇龙猫11 分钟前
【人工智能学习-AI-MIT公开课第 16 讲:支持向量机(SVM)】
人工智能·学习·支持向量机