PyTorch训练深度卷积生成对抗网络DCGAN

文章目录

DCGAN介绍

将CNN和GAN结合起来,把监督学习和无监督学习结合起来。具体解释可以参见 深度卷积对抗生成网络(DCGAN)

DCGAN的生成器结构:

图片来源:https://arxiv.org/abs/1511.06434

代码

model.py

cpp 复制代码
import torch
import torch.nn as nn

class Discriminator(nn.Module):
    def __init__(self, channels_img, features_d):
        super(Discriminator, self).__init__()
        self.disc = nn.Sequential(
            # Input: N x channels_img x 64 x 64
            nn.Conv2d(
                channels_img, features_d, kernel_size=4, stride=2, padding=1
            ), # 32 x 32
            nn.LeakyReLU(0.2),
            self._block(features_d, features_d*2, 4, 2, 1), # 16 x 16
            self._block(features_d*2, features_d*4, 4, 2, 1), # 8 x 8
            self._block(features_d*4, features_d*8, 4, 2, 1), # 4 x 4
            nn.Conv2d(features_d*8, 1, kernel_size=4, stride=2, padding=0), # 1 x 1
            nn.Sigmoid(),
        )

    def _block(self, in_channels, out_channels, kernel_size, stride, padding):
        return nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.LeakyReLU(0.2),
        )

    def forward(self, x):
        return self.disc(x)
    
class Generator(nn.Module):
    def __init__(self, z_dim, channels_img, features_g):
        super(Generator, self).__init__()
        self.gen = nn.Sequential(
            # Input: N x z_dim x 1 x 1
            self._block(z_dim, features_g*16, 4, 1, 0), # N x f_g*16 x 4 x 4
            self._block(features_g*16, features_g*8, 4, 2, 1), # 8x8
            self._block(features_g*8, features_g*4, 4, 2, 1), # 16x16
            self._block(features_g*4, features_g*2, 4, 2, 1), # 32x32
            nn.ConvTranspose2d(
                features_g*2, channels_img, kernel_size=4, stride=2, padding=1,
            ),
            nn.Tanh(),

        )

    def _block(self, in_channels, out_channels, kernel_size, stride, padding):
        return nn.Sequential(
            nn.ConvTranspose2d(
                in_channels,
                out_channels,
                kernel_size,
                stride,
                padding,
                bias=False,
            ),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(),
        )
    
    def forward(self, x):
        return self.gen(x)


def initialize_weights(model):
    for m in model.modules():
        if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d, nn.BatchNorm2d)):
            nn.init.normal_(m.weight.data, 0.0, 0.02)

def test():
    N, in_channels, H, W = 8, 3, 64, 64
    z_dim = 100
    x = torch.randn((N, in_channels, H, W))
    disc = Discriminator(in_channels, 8)
    initialize_weights(disc)
    assert disc(x).shape == (N, 1, 1, 1)

    gen = Generator(z_dim, in_channels, 8)
    initialize_weights(gen)
    z = torch.randn((N, z_dim, 1, 1))
    assert gen(z).shape == (N, in_channels, H, W)
    print("success")
    
if __name__ == "__main__":
    test()

训练使用的数据集:CelebA dataset (Images Only) 总共1.3GB的图片,使用方法,将其解压到当前目录

图片如下图所示:

train.py

cpp 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from model import Discriminator, Generator, initialize_weights

# Hyperparameters etc.
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
LEARNING_RATE = 2e-4  # could also use two lrs, one for gen and one for disc
BATCH_SIZE = 128
IMAGE_SIZE = 64
CHANNELS_IMG = 3 # 1 if MNIST dataset; 3 if celeb dataset
NOISE_DIM = 100
NUM_EPOCHS = 5
FEATURES_DISC = 64
FEATURES_GEN = 64

transforms = transforms.Compose(
    [
        transforms.Resize((IMAGE_SIZE, IMAGE_SIZE)),
        transforms.ToTensor(),
        transforms.Normalize(
            [0.5 for _ in range(CHANNELS_IMG)], [0.5 for _ in range(CHANNELS_IMG)]
        ),
    ]
)

# If you train on MNIST, remember to set channels_img to 1
# dataset = datasets.MNIST(
#     root="dataset/", train=True, transform=transforms, download=True
# )

# comment mnist above and uncomment below if train on CelebA

# If you train on celeb dataset, remember to set channels_img to 3
dataset = datasets.ImageFolder(root="celeb_dataset", transform=transforms)
dataloader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True)
gen = Generator(NOISE_DIM, CHANNELS_IMG, FEATURES_GEN).to(device)
disc = Discriminator(CHANNELS_IMG, FEATURES_DISC).to(device)
initialize_weights(gen)
initialize_weights(disc)

opt_gen = optim.Adam(gen.parameters(), lr=LEARNING_RATE, betas=(0.5, 0.999))
opt_disc = optim.Adam(disc.parameters(), lr=LEARNING_RATE, betas=(0.5, 0.999))
criterion = nn.BCELoss()

fixed_noise = torch.randn(32, NOISE_DIM, 1, 1).to(device)
writer_real = SummaryWriter(f"logs/real")
writer_fake = SummaryWriter(f"logs/fake")
step = 0

gen.train()
disc.train()

for epoch in range(NUM_EPOCHS):
    # Target labels not needed! <3 unsupervised
    for batch_idx, (real, _) in enumerate(dataloader):
        real = real.to(device)
        noise = torch.randn(BATCH_SIZE, NOISE_DIM, 1, 1).to(device)
        fake = gen(noise)

        ### Train Discriminator: max log(D(x)) + log(1 - D(G(z)))
        disc_real = disc(real).reshape(-1)
        loss_disc_real = criterion(disc_real, torch.ones_like(disc_real))
        disc_fake = disc(fake.detach()).reshape(-1)
        loss_disc_fake = criterion(disc_fake, torch.zeros_like(disc_fake))
        loss_disc = (loss_disc_real + loss_disc_fake) / 2
        disc.zero_grad()
        loss_disc.backward()
        opt_disc.step()

        ### Train Generator: min log(1 - D(G(z))) <-> max log(D(G(z))
        output = disc(fake).reshape(-1)
        loss_gen = criterion(output, torch.ones_like(output))
        gen.zero_grad()
        loss_gen.backward()
        opt_gen.step()

        # Print losses occasionally and print to tensorboard
        if batch_idx % 100 == 0:
            print(
                f"Epoch [{epoch}/{NUM_EPOCHS}] Batch {batch_idx}/{len(dataloader)} \
                  Loss D: {loss_disc:.4f}, loss G: {loss_gen:.4f}"
            )

            with torch.no_grad():
                fake = gen(fixed_noise)
                # take out (up to) 32 examples
                img_grid_real = torchvision.utils.make_grid(real[:32], normalize=True)
                img_grid_fake = torchvision.utils.make_grid(fake[:32], normalize=True)

                writer_real.add_image("Real", img_grid_real, global_step=step)
                writer_fake.add_image("Fake", img_grid_fake, global_step=step)

            step += 1

结果

训练5个epoch,部分结果如下:

cpp 复制代码
Epoch [3/5] Batch 1500/1583                   Loss D: 0.4996, loss G: 1.1738
Epoch [4/5] Batch 0/1583                   Loss D: 0.4268, loss G: 1.6633
Epoch [4/5] Batch 100/1583                   Loss D: 0.4841, loss G: 1.7475
Epoch [4/5] Batch 200/1583                   Loss D: 0.5094, loss G: 1.2376
Epoch [4/5] Batch 300/1583                   Loss D: 0.4376, loss G: 2.1271
Epoch [4/5] Batch 400/1583                   Loss D: 0.4173, loss G: 1.4380
Epoch [4/5] Batch 500/1583                   Loss D: 0.5213, loss G: 2.1665
Epoch [4/5] Batch 600/1583                   Loss D: 0.5036, loss G: 2.1079
Epoch [4/5] Batch 700/1583                   Loss D: 0.5158, loss G: 1.0579
Epoch [4/5] Batch 800/1583                   Loss D: 0.5426, loss G: 1.9427
Epoch [4/5] Batch 900/1583                   Loss D: 0.4721, loss G: 1.2659
Epoch [4/5] Batch 1000/1583                   Loss D: 0.5662, loss G: 2.4537
Epoch [4/5] Batch 1100/1583                   Loss D: 0.5604, loss G: 0.8978
Epoch [4/5] Batch 1200/1583                   Loss D: 0.4085, loss G: 2.0747
Epoch [4/5] Batch 1300/1583                   Loss D: 1.1894, loss G: 0.1825
Epoch [4/5] Batch 1400/1583                   Loss D: 0.4518, loss G: 2.1509
Epoch [4/5] Batch 1500/1583                   Loss D: 0.3814, loss G: 1.9391

使用

cpp 复制代码
tensorboard --logdir=logs

打开tensorboard

参考

1\] [DCGAN implementation from scratch](https://www.youtube.com/watch?v=IZtv9s_Wx9I&list=PLhhyoLH6IjfxeoooqP9rhU3HJIAVAJ3Vz&index=25&t=1701s) \[2\]

相关推荐
爱吃泡芙的小白白1 小时前
神经网络压缩实战指南:让大模型“瘦身”跑得更快
人工智能·深度学习·神经网络·模型压缩
YelloooBlue2 小时前
深度学习 SOP: conda通过命令快速构建指定版本tensorflow gpu环境。
深度学习·conda·tensorflow
AI即插即用2 小时前
即插即用系列 | AAAI 2026 WaveFormer: 当视觉建模遇上波动方程,频率-时间解耦的新SOTA
图像处理·人工智能·深度学习·神经网络·计算机视觉·视觉检测
逄逄不是胖胖2 小时前
《动手学深度学习》-55-2RNN的简单实现
人工智能·深度学习
咚咚王者2 小时前
人工智能之核心技术 深度学习 第四章 循环神经网络(RNN)与序列模型
人工智能·rnn·深度学习
Dreaming_of_you3 小时前
pytorch/cv2/pil/torchvision处理图像缩小的最佳方案
人工智能·pytorch·python·opencv
机 _ 长4 小时前
YOLO26 改进 | 训练策略 | 知识蒸馏 (Response + Feature + Relation)
python·深度学习·yolo·目标检测·机器学习·计算机视觉
美狐美颜sdk4 小时前
抖动特效在直播美颜sdk中的实现方式与优化思路
前端·图像处理·人工智能·深度学习·美颜sdk·直播美颜sdk·美颜api
Yeats_Liao4 小时前
异步推理架构:CPU-NPU流水线设计与并发效率提升
python·深度学习·神经网络·架构·开源
哥布林学者5 小时前
吴恩达深度学习课程五:自然语言处理 第三周:序列模型与注意力机制(一)seq2seq 模型
深度学习·ai