PyTorch训练深度卷积生成对抗网络DCGAN

文章目录

DCGAN介绍

将CNN和GAN结合起来,把监督学习和无监督学习结合起来。具体解释可以参见 深度卷积对抗生成网络(DCGAN)

DCGAN的生成器结构:

图片来源:https://arxiv.org/abs/1511.06434

代码

model.py

cpp 复制代码
import torch
import torch.nn as nn

class Discriminator(nn.Module):
    def __init__(self, channels_img, features_d):
        super(Discriminator, self).__init__()
        self.disc = nn.Sequential(
            # Input: N x channels_img x 64 x 64
            nn.Conv2d(
                channels_img, features_d, kernel_size=4, stride=2, padding=1
            ), # 32 x 32
            nn.LeakyReLU(0.2),
            self._block(features_d, features_d*2, 4, 2, 1), # 16 x 16
            self._block(features_d*2, features_d*4, 4, 2, 1), # 8 x 8
            self._block(features_d*4, features_d*8, 4, 2, 1), # 4 x 4
            nn.Conv2d(features_d*8, 1, kernel_size=4, stride=2, padding=0), # 1 x 1
            nn.Sigmoid(),
        )

    def _block(self, in_channels, out_channels, kernel_size, stride, padding):
        return nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.LeakyReLU(0.2),
        )

    def forward(self, x):
        return self.disc(x)
    
class Generator(nn.Module):
    def __init__(self, z_dim, channels_img, features_g):
        super(Generator, self).__init__()
        self.gen = nn.Sequential(
            # Input: N x z_dim x 1 x 1
            self._block(z_dim, features_g*16, 4, 1, 0), # N x f_g*16 x 4 x 4
            self._block(features_g*16, features_g*8, 4, 2, 1), # 8x8
            self._block(features_g*8, features_g*4, 4, 2, 1), # 16x16
            self._block(features_g*4, features_g*2, 4, 2, 1), # 32x32
            nn.ConvTranspose2d(
                features_g*2, channels_img, kernel_size=4, stride=2, padding=1,
            ),
            nn.Tanh(),

        )

    def _block(self, in_channels, out_channels, kernel_size, stride, padding):
        return nn.Sequential(
            nn.ConvTranspose2d(
                in_channels,
                out_channels,
                kernel_size,
                stride,
                padding,
                bias=False,
            ),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(),
        )
    
    def forward(self, x):
        return self.gen(x)


def initialize_weights(model):
    for m in model.modules():
        if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d, nn.BatchNorm2d)):
            nn.init.normal_(m.weight.data, 0.0, 0.02)

def test():
    N, in_channels, H, W = 8, 3, 64, 64
    z_dim = 100
    x = torch.randn((N, in_channels, H, W))
    disc = Discriminator(in_channels, 8)
    initialize_weights(disc)
    assert disc(x).shape == (N, 1, 1, 1)

    gen = Generator(z_dim, in_channels, 8)
    initialize_weights(gen)
    z = torch.randn((N, z_dim, 1, 1))
    assert gen(z).shape == (N, in_channels, H, W)
    print("success")
    
if __name__ == "__main__":
    test()

训练使用的数据集:CelebA dataset (Images Only) 总共1.3GB的图片,使用方法,将其解压到当前目录

图片如下图所示:

train.py

cpp 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from model import Discriminator, Generator, initialize_weights

# Hyperparameters etc.
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
LEARNING_RATE = 2e-4  # could also use two lrs, one for gen and one for disc
BATCH_SIZE = 128
IMAGE_SIZE = 64
CHANNELS_IMG = 3 # 1 if MNIST dataset; 3 if celeb dataset
NOISE_DIM = 100
NUM_EPOCHS = 5
FEATURES_DISC = 64
FEATURES_GEN = 64

transforms = transforms.Compose(
    [
        transforms.Resize((IMAGE_SIZE, IMAGE_SIZE)),
        transforms.ToTensor(),
        transforms.Normalize(
            [0.5 for _ in range(CHANNELS_IMG)], [0.5 for _ in range(CHANNELS_IMG)]
        ),
    ]
)

# If you train on MNIST, remember to set channels_img to 1
# dataset = datasets.MNIST(
#     root="dataset/", train=True, transform=transforms, download=True
# )

# comment mnist above and uncomment below if train on CelebA

# If you train on celeb dataset, remember to set channels_img to 3
dataset = datasets.ImageFolder(root="celeb_dataset", transform=transforms)
dataloader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True)
gen = Generator(NOISE_DIM, CHANNELS_IMG, FEATURES_GEN).to(device)
disc = Discriminator(CHANNELS_IMG, FEATURES_DISC).to(device)
initialize_weights(gen)
initialize_weights(disc)

opt_gen = optim.Adam(gen.parameters(), lr=LEARNING_RATE, betas=(0.5, 0.999))
opt_disc = optim.Adam(disc.parameters(), lr=LEARNING_RATE, betas=(0.5, 0.999))
criterion = nn.BCELoss()

fixed_noise = torch.randn(32, NOISE_DIM, 1, 1).to(device)
writer_real = SummaryWriter(f"logs/real")
writer_fake = SummaryWriter(f"logs/fake")
step = 0

gen.train()
disc.train()

for epoch in range(NUM_EPOCHS):
    # Target labels not needed! <3 unsupervised
    for batch_idx, (real, _) in enumerate(dataloader):
        real = real.to(device)
        noise = torch.randn(BATCH_SIZE, NOISE_DIM, 1, 1).to(device)
        fake = gen(noise)

        ### Train Discriminator: max log(D(x)) + log(1 - D(G(z)))
        disc_real = disc(real).reshape(-1)
        loss_disc_real = criterion(disc_real, torch.ones_like(disc_real))
        disc_fake = disc(fake.detach()).reshape(-1)
        loss_disc_fake = criterion(disc_fake, torch.zeros_like(disc_fake))
        loss_disc = (loss_disc_real + loss_disc_fake) / 2
        disc.zero_grad()
        loss_disc.backward()
        opt_disc.step()

        ### Train Generator: min log(1 - D(G(z))) <-> max log(D(G(z))
        output = disc(fake).reshape(-1)
        loss_gen = criterion(output, torch.ones_like(output))
        gen.zero_grad()
        loss_gen.backward()
        opt_gen.step()

        # Print losses occasionally and print to tensorboard
        if batch_idx % 100 == 0:
            print(
                f"Epoch [{epoch}/{NUM_EPOCHS}] Batch {batch_idx}/{len(dataloader)} \
                  Loss D: {loss_disc:.4f}, loss G: {loss_gen:.4f}"
            )

            with torch.no_grad():
                fake = gen(fixed_noise)
                # take out (up to) 32 examples
                img_grid_real = torchvision.utils.make_grid(real[:32], normalize=True)
                img_grid_fake = torchvision.utils.make_grid(fake[:32], normalize=True)

                writer_real.add_image("Real", img_grid_real, global_step=step)
                writer_fake.add_image("Fake", img_grid_fake, global_step=step)

            step += 1

结果

训练5个epoch,部分结果如下:

cpp 复制代码
Epoch [3/5] Batch 1500/1583                   Loss D: 0.4996, loss G: 1.1738
Epoch [4/5] Batch 0/1583                   Loss D: 0.4268, loss G: 1.6633
Epoch [4/5] Batch 100/1583                   Loss D: 0.4841, loss G: 1.7475
Epoch [4/5] Batch 200/1583                   Loss D: 0.5094, loss G: 1.2376
Epoch [4/5] Batch 300/1583                   Loss D: 0.4376, loss G: 2.1271
Epoch [4/5] Batch 400/1583                   Loss D: 0.4173, loss G: 1.4380
Epoch [4/5] Batch 500/1583                   Loss D: 0.5213, loss G: 2.1665
Epoch [4/5] Batch 600/1583                   Loss D: 0.5036, loss G: 2.1079
Epoch [4/5] Batch 700/1583                   Loss D: 0.5158, loss G: 1.0579
Epoch [4/5] Batch 800/1583                   Loss D: 0.5426, loss G: 1.9427
Epoch [4/5] Batch 900/1583                   Loss D: 0.4721, loss G: 1.2659
Epoch [4/5] Batch 1000/1583                   Loss D: 0.5662, loss G: 2.4537
Epoch [4/5] Batch 1100/1583                   Loss D: 0.5604, loss G: 0.8978
Epoch [4/5] Batch 1200/1583                   Loss D: 0.4085, loss G: 2.0747
Epoch [4/5] Batch 1300/1583                   Loss D: 1.1894, loss G: 0.1825
Epoch [4/5] Batch 1400/1583                   Loss D: 0.4518, loss G: 2.1509
Epoch [4/5] Batch 1500/1583                   Loss D: 0.3814, loss G: 1.9391

使用

cpp 复制代码
tensorboard --logdir=logs

打开tensorboard

参考

1\] [DCGAN implementation from scratch](https://www.youtube.com/watch?v=IZtv9s_Wx9I&list=PLhhyoLH6IjfxeoooqP9rhU3HJIAVAJ3Vz&index=25&t=1701s) \[2\]

相关推荐
机器鱼42 分钟前
1.2 基于卷积神经网络与SE注意力的轴承故障诊断
深度学习·机器学习·cnn
励志成为大佬的小杨44 分钟前
pytorch模型的进阶训练和性能优化
人工智能·pytorch·python
墨绿色的摆渡人2 小时前
用 pytorch 从零开始创建大语言模型(三):编码注意力机制
人工智能·pytorch·语言模型
牙牙要健康2 小时前
【目标检测】【深度学习】【Pytorch版本】YOLOV2模型算法详解
pytorch·深度学习·目标检测
大脑探路者2 小时前
【PyTorch】继承 nn.Module 创建简单神经网络
人工智能·pytorch·神经网络
wgc2k3 小时前
吴恩达深度学习复盘(4)神经网络的前向传播
人工智能·深度学习
屎派克3 小时前
神经网络知识
人工智能·深度学习·神经网络
硅谷秋水4 小时前
大语言模型智体的综述:方法论、应用和挑战(下)
人工智能·深度学习·机器学习·语言模型·自然语言处理
项目申报小狂人5 小时前
CUDA详细安装及环境配置——环境配置指南 – CUDA+cuDNN+PyTorch 安装
人工智能·pytorch·python