PyTorch训练深度卷积生成对抗网络DCGAN

文章目录

DCGAN介绍

将CNN和GAN结合起来,把监督学习和无监督学习结合起来。具体解释可以参见 深度卷积对抗生成网络(DCGAN)

DCGAN的生成器结构:

图片来源:https://arxiv.org/abs/1511.06434

代码

model.py

cpp 复制代码
import torch
import torch.nn as nn

class Discriminator(nn.Module):
    def __init__(self, channels_img, features_d):
        super(Discriminator, self).__init__()
        self.disc = nn.Sequential(
            # Input: N x channels_img x 64 x 64
            nn.Conv2d(
                channels_img, features_d, kernel_size=4, stride=2, padding=1
            ), # 32 x 32
            nn.LeakyReLU(0.2),
            self._block(features_d, features_d*2, 4, 2, 1), # 16 x 16
            self._block(features_d*2, features_d*4, 4, 2, 1), # 8 x 8
            self._block(features_d*4, features_d*8, 4, 2, 1), # 4 x 4
            nn.Conv2d(features_d*8, 1, kernel_size=4, stride=2, padding=0), # 1 x 1
            nn.Sigmoid(),
        )

    def _block(self, in_channels, out_channels, kernel_size, stride, padding):
        return nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.LeakyReLU(0.2),
        )

    def forward(self, x):
        return self.disc(x)
    
class Generator(nn.Module):
    def __init__(self, z_dim, channels_img, features_g):
        super(Generator, self).__init__()
        self.gen = nn.Sequential(
            # Input: N x z_dim x 1 x 1
            self._block(z_dim, features_g*16, 4, 1, 0), # N x f_g*16 x 4 x 4
            self._block(features_g*16, features_g*8, 4, 2, 1), # 8x8
            self._block(features_g*8, features_g*4, 4, 2, 1), # 16x16
            self._block(features_g*4, features_g*2, 4, 2, 1), # 32x32
            nn.ConvTranspose2d(
                features_g*2, channels_img, kernel_size=4, stride=2, padding=1,
            ),
            nn.Tanh(),

        )

    def _block(self, in_channels, out_channels, kernel_size, stride, padding):
        return nn.Sequential(
            nn.ConvTranspose2d(
                in_channels,
                out_channels,
                kernel_size,
                stride,
                padding,
                bias=False,
            ),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(),
        )
    
    def forward(self, x):
        return self.gen(x)


def initialize_weights(model):
    for m in model.modules():
        if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d, nn.BatchNorm2d)):
            nn.init.normal_(m.weight.data, 0.0, 0.02)

def test():
    N, in_channels, H, W = 8, 3, 64, 64
    z_dim = 100
    x = torch.randn((N, in_channels, H, W))
    disc = Discriminator(in_channels, 8)
    initialize_weights(disc)
    assert disc(x).shape == (N, 1, 1, 1)

    gen = Generator(z_dim, in_channels, 8)
    initialize_weights(gen)
    z = torch.randn((N, z_dim, 1, 1))
    assert gen(z).shape == (N, in_channels, H, W)
    print("success")
    
if __name__ == "__main__":
    test()

训练使用的数据集:CelebA dataset (Images Only) 总共1.3GB的图片,使用方法,将其解压到当前目录

图片如下图所示:

train.py

cpp 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from model import Discriminator, Generator, initialize_weights

# Hyperparameters etc.
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
LEARNING_RATE = 2e-4  # could also use two lrs, one for gen and one for disc
BATCH_SIZE = 128
IMAGE_SIZE = 64
CHANNELS_IMG = 3 # 1 if MNIST dataset; 3 if celeb dataset
NOISE_DIM = 100
NUM_EPOCHS = 5
FEATURES_DISC = 64
FEATURES_GEN = 64

transforms = transforms.Compose(
    [
        transforms.Resize((IMAGE_SIZE, IMAGE_SIZE)),
        transforms.ToTensor(),
        transforms.Normalize(
            [0.5 for _ in range(CHANNELS_IMG)], [0.5 for _ in range(CHANNELS_IMG)]
        ),
    ]
)

# If you train on MNIST, remember to set channels_img to 1
# dataset = datasets.MNIST(
#     root="dataset/", train=True, transform=transforms, download=True
# )

# comment mnist above and uncomment below if train on CelebA

# If you train on celeb dataset, remember to set channels_img to 3
dataset = datasets.ImageFolder(root="celeb_dataset", transform=transforms)
dataloader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True)
gen = Generator(NOISE_DIM, CHANNELS_IMG, FEATURES_GEN).to(device)
disc = Discriminator(CHANNELS_IMG, FEATURES_DISC).to(device)
initialize_weights(gen)
initialize_weights(disc)

opt_gen = optim.Adam(gen.parameters(), lr=LEARNING_RATE, betas=(0.5, 0.999))
opt_disc = optim.Adam(disc.parameters(), lr=LEARNING_RATE, betas=(0.5, 0.999))
criterion = nn.BCELoss()

fixed_noise = torch.randn(32, NOISE_DIM, 1, 1).to(device)
writer_real = SummaryWriter(f"logs/real")
writer_fake = SummaryWriter(f"logs/fake")
step = 0

gen.train()
disc.train()

for epoch in range(NUM_EPOCHS):
    # Target labels not needed! <3 unsupervised
    for batch_idx, (real, _) in enumerate(dataloader):
        real = real.to(device)
        noise = torch.randn(BATCH_SIZE, NOISE_DIM, 1, 1).to(device)
        fake = gen(noise)

        ### Train Discriminator: max log(D(x)) + log(1 - D(G(z)))
        disc_real = disc(real).reshape(-1)
        loss_disc_real = criterion(disc_real, torch.ones_like(disc_real))
        disc_fake = disc(fake.detach()).reshape(-1)
        loss_disc_fake = criterion(disc_fake, torch.zeros_like(disc_fake))
        loss_disc = (loss_disc_real + loss_disc_fake) / 2
        disc.zero_grad()
        loss_disc.backward()
        opt_disc.step()

        ### Train Generator: min log(1 - D(G(z))) <-> max log(D(G(z))
        output = disc(fake).reshape(-1)
        loss_gen = criterion(output, torch.ones_like(output))
        gen.zero_grad()
        loss_gen.backward()
        opt_gen.step()

        # Print losses occasionally and print to tensorboard
        if batch_idx % 100 == 0:
            print(
                f"Epoch [{epoch}/{NUM_EPOCHS}] Batch {batch_idx}/{len(dataloader)} \
                  Loss D: {loss_disc:.4f}, loss G: {loss_gen:.4f}"
            )

            with torch.no_grad():
                fake = gen(fixed_noise)
                # take out (up to) 32 examples
                img_grid_real = torchvision.utils.make_grid(real[:32], normalize=True)
                img_grid_fake = torchvision.utils.make_grid(fake[:32], normalize=True)

                writer_real.add_image("Real", img_grid_real, global_step=step)
                writer_fake.add_image("Fake", img_grid_fake, global_step=step)

            step += 1

结果

训练5个epoch,部分结果如下:

cpp 复制代码
Epoch [3/5] Batch 1500/1583                   Loss D: 0.4996, loss G: 1.1738
Epoch [4/5] Batch 0/1583                   Loss D: 0.4268, loss G: 1.6633
Epoch [4/5] Batch 100/1583                   Loss D: 0.4841, loss G: 1.7475
Epoch [4/5] Batch 200/1583                   Loss D: 0.5094, loss G: 1.2376
Epoch [4/5] Batch 300/1583                   Loss D: 0.4376, loss G: 2.1271
Epoch [4/5] Batch 400/1583                   Loss D: 0.4173, loss G: 1.4380
Epoch [4/5] Batch 500/1583                   Loss D: 0.5213, loss G: 2.1665
Epoch [4/5] Batch 600/1583                   Loss D: 0.5036, loss G: 2.1079
Epoch [4/5] Batch 700/1583                   Loss D: 0.5158, loss G: 1.0579
Epoch [4/5] Batch 800/1583                   Loss D: 0.5426, loss G: 1.9427
Epoch [4/5] Batch 900/1583                   Loss D: 0.4721, loss G: 1.2659
Epoch [4/5] Batch 1000/1583                   Loss D: 0.5662, loss G: 2.4537
Epoch [4/5] Batch 1100/1583                   Loss D: 0.5604, loss G: 0.8978
Epoch [4/5] Batch 1200/1583                   Loss D: 0.4085, loss G: 2.0747
Epoch [4/5] Batch 1300/1583                   Loss D: 1.1894, loss G: 0.1825
Epoch [4/5] Batch 1400/1583                   Loss D: 0.4518, loss G: 2.1509
Epoch [4/5] Batch 1500/1583                   Loss D: 0.3814, loss G: 1.9391

使用

cpp 复制代码
tensorboard --logdir=logs

打开tensorboard

参考

1\] [DCGAN implementation from scratch](https://www.youtube.com/watch?v=IZtv9s_Wx9I&list=PLhhyoLH6IjfxeoooqP9rhU3HJIAVAJ3Vz&index=25&t=1701s) \[2\]

相关推荐
UQI-LIUWJ2 小时前
unsloth笔记:运行&微调 gemma
人工智能·笔记·深度学习
THMAIL2 小时前
深度学习从入门到精通 - 生成对抗网络(GAN)实战:创造逼真图像的魔法艺术
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·cnn
北京地铁1号线2 小时前
GPT(Generative Pre-trained Transformer)模型架构与损失函数介绍
gpt·深度学习·transformer
fantasy_arch2 小时前
9.3深度循环神经网络
人工智能·rnn·深度学习
Shiyuan75 小时前
【检索通知】2025年IEEE第二届深度学习与计算机视觉国际会议检索
人工智能·深度学习·计算机视觉
cyyt7 小时前
深度学习周报(9.1~9.7)
人工智能·深度学习
max5006007 小时前
图像处理:实现多图点重叠效果
开发语言·图像处理·人工智能·python·深度学习·音视频
GEO科技权威资讯9 小时前
生成对抗网络 (GAN):理解其原理与创作能力
人工智能·神经网络·生成对抗网络
西猫雷婶10 小时前
scikit-learn/sklearn学习|广义线性回归损失函数的基本表达式
深度学习·神经网络·学习·机器学习·线性回归·scikit-learn·概率论
IMER SIMPLE11 小时前
人工智能-python-深度学习-神经网络-MobileNet V1&V2
人工智能·python·深度学习