PyTorch训练深度卷积生成对抗网络DCGAN

文章目录

DCGAN介绍

将CNN和GAN结合起来,把监督学习和无监督学习结合起来。具体解释可以参见 深度卷积对抗生成网络(DCGAN)

DCGAN的生成器结构:

图片来源:https://arxiv.org/abs/1511.06434

代码

model.py

cpp 复制代码
import torch
import torch.nn as nn

class Discriminator(nn.Module):
    def __init__(self, channels_img, features_d):
        super(Discriminator, self).__init__()
        self.disc = nn.Sequential(
            # Input: N x channels_img x 64 x 64
            nn.Conv2d(
                channels_img, features_d, kernel_size=4, stride=2, padding=1
            ), # 32 x 32
            nn.LeakyReLU(0.2),
            self._block(features_d, features_d*2, 4, 2, 1), # 16 x 16
            self._block(features_d*2, features_d*4, 4, 2, 1), # 8 x 8
            self._block(features_d*4, features_d*8, 4, 2, 1), # 4 x 4
            nn.Conv2d(features_d*8, 1, kernel_size=4, stride=2, padding=0), # 1 x 1
            nn.Sigmoid(),
        )

    def _block(self, in_channels, out_channels, kernel_size, stride, padding):
        return nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.LeakyReLU(0.2),
        )

    def forward(self, x):
        return self.disc(x)
    
class Generator(nn.Module):
    def __init__(self, z_dim, channels_img, features_g):
        super(Generator, self).__init__()
        self.gen = nn.Sequential(
            # Input: N x z_dim x 1 x 1
            self._block(z_dim, features_g*16, 4, 1, 0), # N x f_g*16 x 4 x 4
            self._block(features_g*16, features_g*8, 4, 2, 1), # 8x8
            self._block(features_g*8, features_g*4, 4, 2, 1), # 16x16
            self._block(features_g*4, features_g*2, 4, 2, 1), # 32x32
            nn.ConvTranspose2d(
                features_g*2, channels_img, kernel_size=4, stride=2, padding=1,
            ),
            nn.Tanh(),

        )

    def _block(self, in_channels, out_channels, kernel_size, stride, padding):
        return nn.Sequential(
            nn.ConvTranspose2d(
                in_channels,
                out_channels,
                kernel_size,
                stride,
                padding,
                bias=False,
            ),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(),
        )
    
    def forward(self, x):
        return self.gen(x)


def initialize_weights(model):
    for m in model.modules():
        if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d, nn.BatchNorm2d)):
            nn.init.normal_(m.weight.data, 0.0, 0.02)

def test():
    N, in_channels, H, W = 8, 3, 64, 64
    z_dim = 100
    x = torch.randn((N, in_channels, H, W))
    disc = Discriminator(in_channels, 8)
    initialize_weights(disc)
    assert disc(x).shape == (N, 1, 1, 1)

    gen = Generator(z_dim, in_channels, 8)
    initialize_weights(gen)
    z = torch.randn((N, z_dim, 1, 1))
    assert gen(z).shape == (N, in_channels, H, W)
    print("success")
    
if __name__ == "__main__":
    test()

训练使用的数据集:CelebA dataset (Images Only) 总共1.3GB的图片,使用方法,将其解压到当前目录

图片如下图所示:

train.py

cpp 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from model import Discriminator, Generator, initialize_weights

# Hyperparameters etc.
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
LEARNING_RATE = 2e-4  # could also use two lrs, one for gen and one for disc
BATCH_SIZE = 128
IMAGE_SIZE = 64
CHANNELS_IMG = 3 # 1 if MNIST dataset; 3 if celeb dataset
NOISE_DIM = 100
NUM_EPOCHS = 5
FEATURES_DISC = 64
FEATURES_GEN = 64

transforms = transforms.Compose(
    [
        transforms.Resize((IMAGE_SIZE, IMAGE_SIZE)),
        transforms.ToTensor(),
        transforms.Normalize(
            [0.5 for _ in range(CHANNELS_IMG)], [0.5 for _ in range(CHANNELS_IMG)]
        ),
    ]
)

# If you train on MNIST, remember to set channels_img to 1
# dataset = datasets.MNIST(
#     root="dataset/", train=True, transform=transforms, download=True
# )

# comment mnist above and uncomment below if train on CelebA

# If you train on celeb dataset, remember to set channels_img to 3
dataset = datasets.ImageFolder(root="celeb_dataset", transform=transforms)
dataloader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True)
gen = Generator(NOISE_DIM, CHANNELS_IMG, FEATURES_GEN).to(device)
disc = Discriminator(CHANNELS_IMG, FEATURES_DISC).to(device)
initialize_weights(gen)
initialize_weights(disc)

opt_gen = optim.Adam(gen.parameters(), lr=LEARNING_RATE, betas=(0.5, 0.999))
opt_disc = optim.Adam(disc.parameters(), lr=LEARNING_RATE, betas=(0.5, 0.999))
criterion = nn.BCELoss()

fixed_noise = torch.randn(32, NOISE_DIM, 1, 1).to(device)
writer_real = SummaryWriter(f"logs/real")
writer_fake = SummaryWriter(f"logs/fake")
step = 0

gen.train()
disc.train()

for epoch in range(NUM_EPOCHS):
    # Target labels not needed! <3 unsupervised
    for batch_idx, (real, _) in enumerate(dataloader):
        real = real.to(device)
        noise = torch.randn(BATCH_SIZE, NOISE_DIM, 1, 1).to(device)
        fake = gen(noise)

        ### Train Discriminator: max log(D(x)) + log(1 - D(G(z)))
        disc_real = disc(real).reshape(-1)
        loss_disc_real = criterion(disc_real, torch.ones_like(disc_real))
        disc_fake = disc(fake.detach()).reshape(-1)
        loss_disc_fake = criterion(disc_fake, torch.zeros_like(disc_fake))
        loss_disc = (loss_disc_real + loss_disc_fake) / 2
        disc.zero_grad()
        loss_disc.backward()
        opt_disc.step()

        ### Train Generator: min log(1 - D(G(z))) <-> max log(D(G(z))
        output = disc(fake).reshape(-1)
        loss_gen = criterion(output, torch.ones_like(output))
        gen.zero_grad()
        loss_gen.backward()
        opt_gen.step()

        # Print losses occasionally and print to tensorboard
        if batch_idx % 100 == 0:
            print(
                f"Epoch [{epoch}/{NUM_EPOCHS}] Batch {batch_idx}/{len(dataloader)} \
                  Loss D: {loss_disc:.4f}, loss G: {loss_gen:.4f}"
            )

            with torch.no_grad():
                fake = gen(fixed_noise)
                # take out (up to) 32 examples
                img_grid_real = torchvision.utils.make_grid(real[:32], normalize=True)
                img_grid_fake = torchvision.utils.make_grid(fake[:32], normalize=True)

                writer_real.add_image("Real", img_grid_real, global_step=step)
                writer_fake.add_image("Fake", img_grid_fake, global_step=step)

            step += 1

结果

训练5个epoch,部分结果如下:

cpp 复制代码
Epoch [3/5] Batch 1500/1583                   Loss D: 0.4996, loss G: 1.1738
Epoch [4/5] Batch 0/1583                   Loss D: 0.4268, loss G: 1.6633
Epoch [4/5] Batch 100/1583                   Loss D: 0.4841, loss G: 1.7475
Epoch [4/5] Batch 200/1583                   Loss D: 0.5094, loss G: 1.2376
Epoch [4/5] Batch 300/1583                   Loss D: 0.4376, loss G: 2.1271
Epoch [4/5] Batch 400/1583                   Loss D: 0.4173, loss G: 1.4380
Epoch [4/5] Batch 500/1583                   Loss D: 0.5213, loss G: 2.1665
Epoch [4/5] Batch 600/1583                   Loss D: 0.5036, loss G: 2.1079
Epoch [4/5] Batch 700/1583                   Loss D: 0.5158, loss G: 1.0579
Epoch [4/5] Batch 800/1583                   Loss D: 0.5426, loss G: 1.9427
Epoch [4/5] Batch 900/1583                   Loss D: 0.4721, loss G: 1.2659
Epoch [4/5] Batch 1000/1583                   Loss D: 0.5662, loss G: 2.4537
Epoch [4/5] Batch 1100/1583                   Loss D: 0.5604, loss G: 0.8978
Epoch [4/5] Batch 1200/1583                   Loss D: 0.4085, loss G: 2.0747
Epoch [4/5] Batch 1300/1583                   Loss D: 1.1894, loss G: 0.1825
Epoch [4/5] Batch 1400/1583                   Loss D: 0.4518, loss G: 2.1509
Epoch [4/5] Batch 1500/1583                   Loss D: 0.3814, loss G: 1.9391

使用

cpp 复制代码
tensorboard --logdir=logs

打开tensorboard

参考

1\] [DCGAN implementation from scratch](https://www.youtube.com/watch?v=IZtv9s_Wx9I&list=PLhhyoLH6IjfxeoooqP9rhU3HJIAVAJ3Vz&index=25&t=1701s) \[2\]

相关推荐
【建模先锋】1 小时前
特征提取+概率神经网络 PNN 的轴承信号故障诊断模型
人工智能·深度学习·神经网络·信号处理·故障诊断·概率神经网络·特征提取
轲轲011 小时前
Week02 深度学习基本原理
人工智能·深度学习
smile_Iris2 小时前
Day 40 复习日
人工智能·深度学习·机器学习
深度学习实战训练营2 小时前
TransUNet:Transformer 成为医学图像分割的强大编码器,Transformer 编码器 + U-Net 解码器-k学长深度学习专栏
人工智能·深度学习·transformer
火山kim2 小时前
经典论文研读报告:DAGGER (Dataset Aggregation)
人工智能·深度学习·机器学习
Coding茶水间2 小时前
基于深度学习的水果检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
studytosky3 小时前
深度学习理论与实战:反向传播、参数初始化与优化算法全解析
人工智能·python·深度学习·算法·分类·matplotlib
IT老兵20254 小时前
PyTorch DDP多GPU训练实践问题总结
人工智能·pytorch·python·分布式训练·ddp
@鱼香肉丝没有鱼6 小时前
Transformer底层原理—位置编码
人工智能·深度学习·transformer·位置编码
深度学习实战训练营6 小时前
HRNet:深度高分辨率表示学习用于人体姿态估计-k学长深度学习专栏
人工智能·深度学习