深入浅出Pytorch函数——torch.nn.init.trunc_normal_

分类目录:《深入浅出Pytorch函数》总目录

相关文章:

· 深入浅出Pytorch函数------torch.nn.init.calculate_gain

· 深入浅出Pytorch函数------torch.nn.init.uniform_

· 深入浅出Pytorch函数------torch.nn.init.normal_

· 深入浅出Pytorch函数------torch.nn.init.constant_

· 深入浅出Pytorch函数------torch.nn.init.ones_

· 深入浅出Pytorch函数------torch.nn.init.zeros_

· 深入浅出Pytorch函数------torch.nn.init.eye_

· 深入浅出Pytorch函数------torch.nn.init.dirac_

· 深入浅出Pytorch函数------torch.nn.init.xavier_uniform_

· 深入浅出Pytorch函数------torch.nn.init.xavier_normal_

· 深入浅出Pytorch函数------torch.nn.init.kaiming_uniform_

· 深入浅出Pytorch函数------torch.nn.init.kaiming_normal_

· 深入浅出Pytorch函数------torch.nn.init.trunc_normal_

· 深入浅出Pytorch函数------torch.nn.init.orthogonal_

· 深入浅出Pytorch函数------torch.nn.init.sparse_


torch.nn.init模块中的所有函数都用于初始化神经网络参数,因此它们都在torc.no_grad()模式下运行,autograd不会将其考虑在内。

该函数用截断正态分布中的值填充输入张量。这些值实际上是从正态分布 N ( mean , std 2 ) N(\text{mean}, \text{std}^2) N(mean,std2)中得出的,其中 [ a , b ] [a, b] [a,b]之外的值被重新绘制,直到它们在边界内。用于生成随机值的方法在 a ≤ mean ≤ b a\leq\text{mean}\leq b a≤mean≤b情况下效果最佳。

语法

复制代码
torch.nn.init.trunc_normal_(tensor, mean=0.0, std=1.0, a=- 2.0, b=2.0)

参数

  • tensor:[Tensor] 一个 N N N维张量torch.Tensor
  • mean :[float] 正态分布的均值
  • std :[float] 正态分布的标准差
  • a:[float] 截断边界的最小值
  • b:[float] 截断边界的最大值

返回值

一个torch.Tensor且参数tensor也会更新

实例

复制代码
w = torch.empty(3, 5)
nn.init.trunc_normal_(w)

函数实现

复制代码
def trunc_normal_(tensor: Tensor, mean: float = 0., std: float = 1., a: float = -2., b: float = 2.) -> Tensor:
    r"""Fills the input Tensor with values drawn from a truncated
    normal distribution. The values are effectively drawn from the
    normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
    with values outside :math:`[a, b]` redrawn until they are within
    the bounds. The method used for generating the random values works
    best when :math:`a \leq \text{mean} \leq b`.

    Args:
        tensor: an n-dimensional `torch.Tensor`
        mean: the mean of the normal distribution
        std: the standard deviation of the normal distribution
        a: the minimum cutoff value
        b: the maximum cutoff value

    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.trunc_normal_(w)
    """
    return _no_grad_trunc_normal_(tensor, mean, std, a, b)
相关推荐
ai大模型木子19 分钟前
嵌入模型(Embedding Models)原理详解:从Word2Vec到BERT的技术演进
人工智能·自然语言处理·bert·embedding·word2vec·ai大模型·大模型资料
普if加的帕2 小时前
java Springboot使用扣子Coze实现实时音频对话智能客服
java·开发语言·人工智能·spring boot·实时音视频·智能客服
KoiC2 小时前
Dify接入RAGFlow无返回结果
人工智能·ai应用
lilye663 小时前
精益数据分析(20/126):解析经典数据分析框架,助力创业增长
大数据·人工智能·数据分析
盈达科技3 小时前
盈达科技:登顶GEO优化全球制高点,以AICC定义AI时代内容智能优化新标杆
大数据·人工智能
安冬的码畜日常3 小时前
【AI 加持下的 Python 编程实战 2_10】DIY 拓展:从扫雷小游戏开发再探问题分解与 AI 代码调试能力(中)
开发语言·前端·人工智能·ai·扫雷游戏·ai辅助编程·辅助编程
古希腊掌管学习的神3 小时前
[LangGraph教程]LangGraph04——支持人机协作的聊天机器人
人工智能·语言模型·chatgpt·机器人·agent
FIT2CLOUD飞致云3 小时前
问答页面支持拖拽和复制粘贴文件,MaxKB企业级AI助手v1.10.6 LTS版本发布
人工智能·开源
起个破名想半天了3 小时前
计算机视觉cv入门之答题卡自动批阅
人工智能·opencv·计算机视觉
早睡早起吧3 小时前
目标检测篇---Fast R-CNN
人工智能·目标检测·计算机视觉·cnn