时序预测 | MATLAB实现基于CNN-GRU卷积门控循环单元的时间序列预测-递归预测未来(多指标评价)

时序预测 | MATLAB实现基于CNN-GRU卷积门控循环单元的时间序列预测-递归预测未来(多指标评价)

目录

    • [时序预测 | MATLAB实现基于CNN-GRU卷积门控循环单元的时间序列预测-递归预测未来(多指标评价)](#时序预测 | MATLAB实现基于CNN-GRU卷积门控循环单元的时间序列预测-递归预测未来(多指标评价))

预测结果




基本介绍

MATLAB实现基于CNN-GRU卷积门控循环单元的时间序列预测-递归预测未来(多指标评价)

1.MATLAB实现基于CNN-GRU卷积门控循环单元的时间序列预测-递归预测未来(多指标评价);

2.运行环境Matlab2020及以上,data为数据集,单变量时间序列预测;

3.递归预测未来数据,可以控制预测未来大小的数目,适合循环性、周期性数据预测;

4.命令窗口输出R2、MAE、MAPE、MBE、MSE等评价指标;

程序设计

  • 完整程序和数据获取方式:私信博主回复MATLAB实现基于CNN-GRU卷积门控循环单元的时间序列预测-递归预测未来(多指标评价)
matlab 复制代码
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

------------------------------------------------
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/132093256

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502

[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关推荐
阡之尘埃4 天前
Python数据分析案例70——基于神经网络的时间序列预测(滞后性的效果,预测中存在的问题)
python·神经网络·数据分析·数据可视化·循环神经网络·时间序列预测
机器学习之心6 天前
WOA-CNN-GRU-Attention、CNN-GRU-Attention、WOA-CNN-GRU、CNN-GRU四模型对比多变量时序预测
attention·cnn-gru·woa-cnn-gru·四模型对比多变量时序预测
机器学习之心10 天前
CNN-GRU-MATT加入贝叶斯超参数优化,多输入单输出回归模型
cnn-gru·cnn-gru-matt·贝叶斯超参数优化·多输入单输出回归模型
简简单单做算法23 天前
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
matlab·cnn·时间序列预测·tcn·时间卷积神经网络·ga遗传优化·ga-tcn
机器学习之心24 天前
CPO-CNN-GRU-Attention、CNN-GRU-Attention、CPO-CNN-GRU、CNN-GRU四模型多变量时序预测对比
人工智能·cnn·gru·cnn-gru·cpo-cnn-gru
机器学习之心1 个月前
五模型对比!Transformer-GRU、Transformer、CNN-GRU、GRU、CNN五模型多变量时间序列预测
cnn·gru·transformer·cnn-gru·transformer-gru·五模型多变量时间序列预测
软件算法开发1 个月前
基于遗传优化ELM网络的时间序列预测算法matlab仿真
算法·matlab·时间序列预测·elm·ga-elm
机器学习之心1 个月前
SABO-CNN-BiGRU-Attention减法优化器优化卷积神经网络结合双向门控循环单元时间序列预测,含优化前后对比
时间序列预测·sabo-cnn-bigru·减法优化器优化·卷积神经网络双向门控循环单元
FranzLiszt18472 个月前
时间序列预测——周期性解藕框架(PDF)
pdf·时间序列预测·patchtst
机器学习之心2 个月前
时序预测 | 改进图卷积+informer时间序列预测,pytorch架构
人工智能·pytorch·python·时间序列预测·informer·改进图卷积