神经网络基础-神经网络补充概念-30-搭建神经网络块

概念

搭建神经网络块是一种常见的做法,它可以帮助你更好地组织和复用网络结构。神经网络块可以是一些相对独立的模块,例如卷积块、全连接块等,用于构建更复杂的网络架构。

代码实现

python 复制代码
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers

# 定义一个卷积块
def convolutional_block(x, num_filters, kernel_size, pool_size):
    x = layers.Conv2D(num_filters, kernel_size, activation='relu', padding='same')(x)
    x = layers.MaxPooling2D(pool_size)(x)
    return x

# 构建神经网络模型
def build_model():
    inputs = layers.Input(shape=(28, 28, 1))  # 输入数据为28x28的灰度图像
    x = convolutional_block(inputs, num_filters=32, kernel_size=(3, 3), pool_size=(2, 2))
    x = convolutional_block(x, num_filters=64, kernel_size=(3, 3), pool_size=(2, 2))
    x = layers.Flatten()(x)
    x = layers.Dense(128, activation='relu')(x)
    outputs = layers.Dense(10, activation='softmax')(x)  # 输出层,10个类别
    model = keras.Model(inputs, outputs)
    return model

# 加载数据
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
x_train = np.expand_dims(x_train, axis=-1).astype('float32') / 255.0
x_test = np.expand_dims(x_test, axis=-1).astype('float32') / 255.0
y_train = keras.utils.to_categorical(y_train, num_classes=10)
y_test = keras.utils.to_categorical(y_test, num_classes=10)

# 构建模型
model = build_model()

# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

# 训练模型
model.fit(x_train, y_train, batch_size=64, epochs=10, validation_split=0.1)

# 评估模型
test_loss, test_accuracy = model.evaluate(x_test, y_test)
print("Test Loss:", test_loss)
print("Test Accuracy:", test_accuracy)
相关推荐
junziruruo4 分钟前
t-SNE可视化降维技术(以FMTrack频率感知与多专家融合文章中的内容为例)
人工智能·算法
藦卡机器人14 分钟前
自动焊接机器人的核心技术要求与标准
人工智能·算法·机器人
小冷coding15 分钟前
AI Agent 技术栈并探索其在业务创新中的应用
人工智能
喝凉白开都长肉的大胖子18 分钟前
将gym更新到Gymnasium后需要修改哪些位置
人工智能·机器学习·强化学习’
橙露28 分钟前
时间序列分析实战:用 Python 实现股票价格预测与风险评估
人工智能·python·机器学习
啊阿狸不会拉杆32 分钟前
第 3 章 灰度变换与空间域滤波
图像处理·人工智能·机器学习·计算机视觉·数据挖掘·数字图像处理
CCPC不拿奖不改名38 分钟前
循环神经网络RNN:整数索引→稠密向量(嵌入层 / Embedding)详解
人工智能·python·rnn·深度学习·神经网络·自然语言处理·embedding
学好statistics和DS1 小时前
感知机的对偶形式是怎么来的
深度学习·神经网络·机器学习
石去皿1 小时前
大模型面试常见问答
人工智能·面试·职场和发展
Java后端的Ai之路1 小时前
【AI大模型开发】-RAG 技术详解
人工智能·rag