神经网络基础-神经网络补充概念-30-搭建神经网络块

概念

搭建神经网络块是一种常见的做法,它可以帮助你更好地组织和复用网络结构。神经网络块可以是一些相对独立的模块,例如卷积块、全连接块等,用于构建更复杂的网络架构。

代码实现

python 复制代码
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers

# 定义一个卷积块
def convolutional_block(x, num_filters, kernel_size, pool_size):
    x = layers.Conv2D(num_filters, kernel_size, activation='relu', padding='same')(x)
    x = layers.MaxPooling2D(pool_size)(x)
    return x

# 构建神经网络模型
def build_model():
    inputs = layers.Input(shape=(28, 28, 1))  # 输入数据为28x28的灰度图像
    x = convolutional_block(inputs, num_filters=32, kernel_size=(3, 3), pool_size=(2, 2))
    x = convolutional_block(x, num_filters=64, kernel_size=(3, 3), pool_size=(2, 2))
    x = layers.Flatten()(x)
    x = layers.Dense(128, activation='relu')(x)
    outputs = layers.Dense(10, activation='softmax')(x)  # 输出层,10个类别
    model = keras.Model(inputs, outputs)
    return model

# 加载数据
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
x_train = np.expand_dims(x_train, axis=-1).astype('float32') / 255.0
x_test = np.expand_dims(x_test, axis=-1).astype('float32') / 255.0
y_train = keras.utils.to_categorical(y_train, num_classes=10)
y_test = keras.utils.to_categorical(y_test, num_classes=10)

# 构建模型
model = build_model()

# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

# 训练模型
model.fit(x_train, y_train, batch_size=64, epochs=10, validation_split=0.1)

# 评估模型
test_loss, test_accuracy = model.evaluate(x_test, y_test)
print("Test Loss:", test_loss)
print("Test Accuracy:", test_accuracy)
相关推荐
大千AI助手27 分钟前
指数分布:从理论到机器学习应用
人工智能·机器学习·参数估计·概率密度函数·mle·指数分布·累积分布函数
MATLAB代码顾问29 分钟前
MATLAB绘制多种混沌系统
人工智能·算法·matlab
搬砖的小码农_Sky30 分钟前
人形机器人:Tesla Optimus的AI集成细节
人工智能·ai·机器人
做运维的阿瑞41 分钟前
2025 年度国产大模型「开源 vs. 闭源」深度评测与实战指南
人工智能·低代码·开源
渡我白衣1 小时前
深度学习入门(三)——优化算法与实战技巧
人工智能·深度学习
可触的未来,发芽的智生1 小时前
触摸未来2025.10.10:记忆的种子,当神经网络拥有了临时工作区,小名喜忆记系统
人工智能·python·神经网络·机器学习·架构
极客BIM工作室1 小时前
演化搜索与群集智能:五种经典算法探秘
人工智能·算法·机器学习
Guheyunyi1 小时前
消防管理系统如何重构现代空间防御体系
大数据·运维·人工智能·安全·信息可视化·重构
东方芷兰1 小时前
LLM 笔记 —— 04 为什么语言模型用文字接龙,图片模型不用像素接龙呢?
人工智能·笔记·深度学习·语言模型·自然语言处理
Niuguangshuo2 小时前
深度学习基本模块:MultiheadAttention 多头注意力机制
人工智能·深度学习